作者: Amrita Gupta , Tony Chang , Jeffrey Walker , Benjamin Letcher
DOI:
关键词:
摘要: Effective water resources management depends on monitoring the volume of water flowing through streams and rivers, but collecting continuous discharge measurements using traditional streamflow gages is prohibitively expensive. Time-lapse cameras offer a low-cost option for streamflow monitoring, but training models for predicting streamflow directly from images requires streamflow data to use as labels, which are often unavailable. We address this data gap by proposing the alternative task of Streamflow Rank Estimation (SRE), in which the goal is to predict relative measures of streamflow such as percentile rank rather than absolute flow. In particular, we use a learning-to-rank framework to train SRE models using pairs of stream images ranked in order of discharge by an annotator, obviating the need for discharge training data and thus facilitating monitoring streamflow conditions at streams without gages …