作者: Andy Stock , Ajit Subramaniam
DOI:
关键词:
摘要: In marine remote sensing, supervised learning can link variables measured in-situ near the ocean surface to variables that can be measured from space. However, the in-situ data used for training and validating such empirical satellite algorithms are often spatially auto-correlated and clustered, giving rise to various statistical challenges such as overfitting to spatial structures. Furthermore, co-located in-situ and satellite measurements are rare in the oceans because of the cost of data collection from research vessels and frequent cloud cover. We propose two methods to mitigate these challenges. The first method builds on spatial leave-one-out cross-validation (SLOOCV), an approach designed to provide sound error estimates when data are spatially auto-correlated by enforcing a minimum separation distance between training and test observations. However, estimating this distance may be impossible with sparse …