作者: Foulon Valentin , Lambert Christophe , Huvet Arnaud , Soudant Philippe , Paul-Pont Ika
DOI:
关键词:
摘要: Microplastics collected at sea harbor a high diversity of microorganisms, including some Vibrio genus members, raising questions about the role of microplastics as a novel ecological niche for potentially pathogenic microorganisms. In the present study, we investigated the adhesion dynamics of Vibrio crassostreae on polystyrene microparticles (micro-PS) using electronic and fluorescence microscopy techniques. Micro-PS were incubated with bacteria in different media (Zobell culture medium and artificial seawater) with or without natural marine aggregates. The highest percentage of colonized particles (38–100%) was observed in Zobell culture medium, which may be related to nutrient availability for production of pili and exopolysaccharide adhesion structures. A longer bacterial attachment (6 days) was observed on irregular micro-PS compared to smooth particles (<10 h), but complete decolonization of all particles eventually occurred. The presence of natural marine agreggates around micro-PS led to substantial and perennial colonization featuring monospecific biofilms at the surface of the aggregates. These exploratory results suggest that V. crassostreae may be a secondary colonizer of micro-PS, requiring a multispecies community to form a durable adhesion phenotype. Temporal assessment of microbial colonization on microplastics at sea using imaging and omics approaches are further indicated to better understand the microplastics colonization dynamics and species assemblages.