作者: Lucas J Andrew , Sundiata Kly , Erin G Moloney , Matthew G Moffitt
DOI:
关键词:
摘要: Microfluidic manufacturing of advanced gene delivery vectors necessitates consideration of the effects of microfluidic shear forces on the structural integrity of plasmid DNA (pDNA). In this paper, we expose pDNA to variable shear forces in a two-phase, gas–liquid microfluidic reactor and apply gel electrophoresis to analyze the products of on-chip shear-induced degradation. The effects of shear rate, solvent environment, pDNA size, and copolymer complexation on shear-induced degradation are investigated. We find that small naked pDNA (pUC18, 2.7 kb) exhibits shear rate-dependent shear degradation in the microfluidic channels in a mixed organic solvent (dioxane/water/acetic acid; 90/10/<0.1 w/w/w), with the extents of both supercoil isoform relaxation and complete fragmentation increasing as the maximum shear rates increase from 4 × 105 to 2 × 106 s–1. However, over the same range of shear rates, the …