作者: Xiaomeng Liu , Hongyan Gao , Lu Sun , Jun Yao
DOI:
关键词:
摘要: Air humidity is a vast, sustainable reservoir of energy that, unlike solar and wind, is continuously available. However, previously described technologies for harvesting energy from air humidity are either not continuous or require unique material synthesis or processing, which has stymied scalability and broad deployment. Here, a generic effect for continuous energy harvesting from air humidity is reported, which can be applied to a broad range of inorganic, organic, and biological materials. The common feature of these materials is that they are engineered with appropriate nanopores to allow air water to pass through and undergo dynamic adsorption–desorption exchange at the porous interface, resulting in surface charging. The top exposed interface experiences this dynamic interaction more than the bottom sealed interface in a thin‐film device structure, yielding a spontaneous and sustained charging gradient …