作者: Kai Fu , Cheng Zhong , Liang Zhang , Xiaoming Wang , Baoxian Nie
DOI:
关键词:
摘要: Establishing the relationship between thermal cycling and the induced evolution of microstructures and cladding layer properties is crucial to achieving microstructural and performance control, given the complexity involved in high-speed laser cladding process. We hereby report our new findings from laser cladding of Inconel 625 on Q245R steel substrate using a high-speed laser cladding technique. The microstructure evolution and microhardness variations in the first cladding track with different thermal cycles were examined by XRD, SEM, EBSD, TEM, and microhardness tests in detail. Numerical simulation was also conducted to characteristically illustrate the complex thermal cycles during the laser cladding process. Our work revealed that the first six thermal cycles resulted in significant variations of microstructure in the laser cladding layers. The dislocation density and low angle grain boundaries (LAGBs) of …