作者: Francis Jose , Shalabh K Anand , Sunil P Singh , None
DOI:
关键词:
摘要: We present the Brownian dynamics simulation of an active colloidal suspension in two dimensions, where the self-propulsion speed of a colloid is regulated according to the local density sensed by it. The role of concentration-dependent motility in the phase-separation of colloids and their dynamics is investigated in detail. Interestingly, the system phase separates at a very low packing fraction (Φ ≈ 0.125) at higher self-propulsion speeds (Pe), into a dense phase coexisting with a homogeneous phase and attains a long-range crystalline order beyond the transition point. The transition point is quantified here from the local density profiles and local and global-bond order parameters. We have shown that the characteristics of the phase diagram are qualitatively akin to the active Brownian particle (ABP) model. Moreover, our investigation reveals that the density-dependent motility amplifies the slow-down of the …