DOI:
关键词:
摘要: Despite decades of effort, our understanding of low-temperature phase of spin glass models with short-range interactions remains incomplete. Replica symmetry breaking (RSB) theory, based on the solution of the Sherrington-Kirkpatrick mean-field model, predicts many pure states; meanwhile, competing theories of short-range systems, such as the droplet picture, predict a single pair of pure states related by time-reversal symmetry, analogously to the ferromagnet. Since RSB certainly holds for the mean-field (infinite-range) model, it is interesting to study short-range models in high dimensions to observe whether RSB also holds here; however, computer simulations of short-range models in high dimensions are difficult because the number of spins to equilibrate grows so rapidly with the linear size of the system.