作者: Qiong Liu , Srivilliputtur Subbiah Nanthakumar , Bin Li , Teresa Cheng , Florian Bittner
DOI:
关键词:
摘要: Low-dimensional van der Waals (vdW) three-dimensional (3D) topological insulators (TIs) have been overlooked, regarding their electromechanical properties. In this study, we experimentally investigate the electromechanical coupling of low-dimensional 3D TIs with a centrosymmetric crystal structure, where a binary compound, bismuth selenide (Bi2Se3), is taken as an example. Piezoresponse force microscopy (PFM) results of Bi2Se3 nanoflakes show that the material exhibits both out-of-plane and in-plane electromechanical responses. With careful analyses, the electromechanical responses are verified to arise from the converse flexoelectricity. The Bi2Se3 nanoflakes have a decreasing effective out-of-plane piezoelectric coefficient d33eff with the thickness increasing, with the d33eff value of ∼0.65 pm V–1 for the 37 nm-thick sample. The measured effective out-of-plane piezoelectric coefficient is mainly …