作者: Zhen Lyu , Jessica A Kinkade , Nathan J Bivens , R Michael Roberts , Trupti Joshi
DOI:
关键词:
摘要: Pregnant women are often prescribed or abuse opioid drugs. The placenta is likely the key to understanding how opioids cause adverse pregnancy outcomes. Maternal oxycodone (OXY) exposure of pregnant mice leads to disturbances in the layer of invasive parietal trophoblast giant cells (pTGC) that forms the interface between the placenta and uterus. These cells are analogous to extravillous trophoblasts of the human placenta. They are crucial to coordinating the metabolic needs of the conceptus with those of the mother and are primary participants in the placenta–brain axis. Their large nuclear size, however, has precluded both single-cell (sc) and single-nucleus (sn) RNA-seq analyses beyond embryonic day (E) 8.5. Here, we compared the transcriptomes of placentas from pregnant mice exposed to OXY with unexposed controls at E12.5, with particular emphasis on the pTGC. The nonfluidic Parse snRNA …