作者: 김동균 , 임재한 , 이현종 , 임연섭 , None
DOI:
关键词:
摘要: 연합학습은 신경망 전역 모델을 여러 개의 디바이스에서 공동으로 학습을 하는 방식으로, 기존의 중앙 집중화 학습에 비해 데이터 보안 및 통신 비용에 있어 이점을 가지고 있기 때문에 현재 많은 연구가 이루어지고 있다. 이러한 연합학습에 대한 연구는 대부분 Artificial Neural Network(ANN)을 전역 모델로 사용하는데, ANN은 에너지 소모가 크기 때문에 모바일 디바이스 및 임베디드 디바이스에서 사용을 하기에는 무리가 있다. 대신에 에너지 효율성이 높은 Spiking Neural Network(SNN)을 전역 모델로 사용한 연합학습에 대한 연구가 이루어지고 있다. SNN은 스파이크를 통해서 뉴런들 간에 정보를 전달하는 신경망으로, event-driven 방식으로 작동하기 때문에 ANN에 비해 에너지 효율성이 높다는 이점이 있다. 하지만 ANN을 연합학습에 사용한 연구 결과에 비해 SNN을 연합학습에 사용한 연구 결과는 매우 적으며, 이는 SNN 기반 연합학습을 여러 분야에 적용하기 힘들게 한다. 본 논문에서는 실험을 통해 분석한 결과 SNN 기반의 연합학습이 …