minicore: Fast scRNA-seq clustering with various distances

Langmead B , Hicks Sc , Baker Dn , Dyjack N
bioRxiv

2021
Convex hull for intersections of random lines

Vladimir Braverman , Daniel Berend
Discrete Mathematics & Theoretical Computer Science 39 -48

2
2005
Streaming k-means on well-clusterable data

Vladimir Braverman , Brian Tagiku , Rafail Ostrovsky , Alan Roytman
symposium on discrete algorithms 26 -40

54
2011
Clustering problems on sliding windows

Vladimir Braverman , Harry Lang , Keith Levin , Morteza Monemizadeh
symposium on discrete algorithms 1374 -1390

18
2016
Sliding Window Algorithms.

Vladimir Braverman
Encyclopedia of Algorithms 2006 -2011

5
2016
An Optimal Algorithm for Large Frequency Moments Using O(n^(1-2/k)) Bits

Vladimir Braverman , Gregory Vorsanger , Charles Seidell , Jonathan Katzman
international workshop and international workshop on approximation randomization and combinatorial optimization algorithms and techniques 544

16
2014
Zero-One Laws for Sliding Windows and Universal Sketches

Vladimir Braverman , Rafail Ostrovsky , Alan Roytman
international workshop and international workshop on approximation, randomization, and combinatorial optimization. algorithms and techniques 573 -590

17
2015
Clustering on Sliding Windows in Polylogarithmic Space.

Vladimir Braverman , Harry Lang , Keith Levin , Morteza Monemizadeh
foundations of software technology and theoretical computer science 45 350 -364

6
2015
Sampling from Dense Streams without Penalty - Improved Bounds for Frequency Moments and Heavy Hitters.

Vladimir Braverman , Gregory Vorsanger
computing and combinatorics conference 13 -24

2014
Towards Fast and Scalable Graph Pattern Mining

Vladimir Braverman , Anand Padmanabha Iyer , Ion Stoica , Zaoxing Liu
usenix conference on hot topics in cloud ccomputing

2018
ASAP: fast, approximate graph pattern mining at scale

Vladimir Braverman , Anand Padmanabha Iyer , Ion Stoica , Zaoxing Liu
operating systems design and implementation 745 -761

35
2018
DistCache: provable load balancing for large-scale storage systems with distributed caching

Vladimir Braverman , Changhoon Kim , Zhenming Liu , Ion Stoica
file and storage technologies 143 -157

113
2019
On Activation Function Coresets for Network Pruning

Vladimir Braverman , Dan Feldman , Samson Zhou , Ben Mussay

2
2019
The Physical Systems Behind Optimization Algorithms

Raman Arora , Lin F. Yang , Tuo Zhao , Vladimir Braverman
neural information processing systems 31 4372 -4381

7
2018
Clustering high dimensional dynamic data streams

Vladimir Braverman , Christian Sohler , Gereon Frahling , Harry Lang
international conference on machine learning 576 -585

8
2017
Coresets for Ordered Weighted Clustering

Vladimir Braverman , Robert Krauthgamer , Shaofeng H.-C. Jiang , Xuan Wu
international conference on machine learning 744 -753

4
2019
Matrix Norms in Data Streams: Faster, Multi-Pass and Row-Order

Vladimir Braverman , Robert Krauthgamer , Stephen R. Chestnut , David P. Woodruff
international conference on machine learning 648 -657

7
2018
Data-Independent Neural Pruning via Coresets

Vladimir Braverman , Margarita Osadchy , Dan Feldman , Samson Zhou
arXiv: Learning

41
2019
Streaming Coreset Constructions for M-Estimators.

Vladimir Braverman , Daniela Rus , Harry Lang , Dan Feldman
international workshop and international workshop on approximation, randomization, and combinatorial optimization. algorithms and techniques

1
2019
On the Noisy Gradient Descent that Generalizes as SGD

Jingfeng Wu , Wenqing Hu , Haoyi Xiong , Jun Huan
arXiv: Learning

57
2019