Zero-one frequency laws

Vladimir Braverman , Rafail Ostrovsky
Proceedings of the 42nd ACM symposium on Theory of computing - STOC '10 281 -290

61
2010
Pretrained models for multilingual federated learning

Orion Weller , Marc Marone , Vladimir Braverman , Dawn Lawrie
arXiv preprint arXiv:2206.02291

3
2022
Adversarial robustness of streaming algorithms through importance sampling

Vladimir Braverman , Avinatan Hassidim , Yossi Matias , Mariano Schain
Advances in Neural Information Processing Systems 34 3544 -3557

18
2021
Sublinear time spectral density estimation

Vladimir Braverman , Aditya Krishnan , Christopher Musco
Smpte Journal 1144 -1157

5
2022
From Local to Global: Spectral-Inspired Graph Neural Networks

Ningyuan Huang , Soledad Villar , Carey E Priebe , Da Zheng
arXiv preprint arXiv:2209.12054

2022
Asynchronous Decentralized Federated Lifelong Learning for Landmark Localization in Medical Imaging

Guangyao Zheng , Michael A Jacobs , Vladimir Braverman , Vishwa S Parekh
arXiv preprint arXiv:2303.06783

2023
Sparsity and heterogeneous dropout for continual learning in the null space of neural activations

Ali Abbasi , Parsa Nooralinejad , Vladimir Braverman , Hamed Pirsiavash
Smpte Journal 617 -628

5
2022
The benefits of implicit regularization from sgd in least squares problems

Difan Zou , Jingfeng Wu , Vladimir Braverman , Quanquan Gu
Advances in neural information processing systems 34 5456 -5468

15
2021
KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache

Zirui Liu , Jiayi Yuan , Hongye Jin , Shaochen Zhong
arXiv preprint arXiv:2402.02750

8
2024
Benign Overfitting of Constant-Stepsize SGD for Linear Regression

Difan Zou , Jingfeng Wu , Vladimir Braverman , Quanquan Gu
COLT

58
2021
Direction Matters: On the Implicit Bias of Stochastic Gradient Descent with Moderate Learning Rate

Jingfeng Wu , Difan Zou , Vladimir Braverman , Quanquan Gu
International Conference on Learning Representations

32
2021
Last iterate risk bounds of sgd with decaying stepsize for overparameterized linear regression

Jingfeng Wu , Difan Zou , Vladimir Braverman , Quanquan Gu
International Conference on Machine Learning 24280 -24314

23
2022
How Many Pretraining Tasks Are Needed for In-Context Learning of Linear Regression?

Jingfeng Wu , Difan Zou , Zixiang Chen , Vladimir Braverman
arXiv preprint arXiv:2310.08391

17
2023
The power and limitation of pretraining-finetuning for linear regression under covariate shift

Jingfeng Wu , Difan Zou , Vladimir Braverman , Quanquan Gu
Advances in Neural Information Processing Systems 35 33041 -33053

12
2022
Finite-Sample Analysis of Learning High-Dimensional Single ReLU Neuron

Jingfeng Wu , Difan Zou , Zixiang Chen , Vladimir Braverman
International Conference on Machine Learning

6
2023
Risk bounds of multi-pass sgd for least squares in the interpolation regime

Difan Zou , Jingfeng Wu , Vladimir Braverman , Quanquan Gu
Advances in Neural Information Processing Systems 35 12909 -12920

4
2022
6
2013
Provable data subset selection for efficient neural networks training

Murad Tukan , Samson Zhou , Alaa Maalouf , Daniela Rus
International Conference on Machine Learning 34533 -34555

5
2023