Learning Automation Policies for Pervasive Computing Environments

B.D. Ziebart , D. Roth , R.H. Campbell , A.K. Dey
Second International Conference on Autonomic Computing (ICAC'05) 193 -203

30
2005
Modeling purposeful adaptive behavior with the principle of maximum causal entropy

Brian D. Ziebart , J. Andrew Bagnell
Carnegie Mellon University

456
2010
Predictive Inverse Optimal Control for Linear-Quadratic-Gaussian Systems

Brian D. Ziebart , Xiangli Chen
international conference on artificial intelligence and statistics 165 -173

5
2015
Maximum entropy inverse reinforcement learning

Brian D. Ziebart , J. Andrew Bagnell , Anind K. Dey , Andrew Maas
national conference on artificial intelligence 1433 -1438

2,708
2008
Modeling Interaction via the Principle of Maximum Causal Entropy

Brian D. Ziebart , J. A. Bagnell , Anind K. Dey
international conference on machine learning 1255 -1262

264
2010
Maximum causal entropy correlated equilibria for Markov games

Brian D. Ziebart , J. Andrew Bagnell , Anind K. Dey
adaptive agents and multi-agents systems 207 -214

16
2011
Adversarial prediction games for multivariate losses

Brian D. Ziebart , Kaiser Asif , Wei Xing , Hong Wang
neural information processing systems 28 2728 -2736

20
2015
Softstar: heuristic-guided probabilistic inference

Brian D. Ziebart , Patrick Lucey , Brenden M. Lake , Joshua B. Tenenbaum
neural information processing systems 28 2764 -2772

5
2015
Adversarial cost-sensitive classification

Brian D. Ziebart , Kaiser Asif , Wei Xing , Sima Behpour
uncertainty in artificial intelligence 92 -101

15
2015
Intent prediction and trajectory forecasting via predictive inverse linear-quadratic regulation

Brian D. Ziebart , Anqi Liu , Mathew Monfort
national conference on artificial intelligence 3672 -3678

30
2015
Shift-pessimistic active learning using robust bias-aware prediction

Brian D. Ziebart , Anqi Liu , Lev Reyzin
national conference on artificial intelligence 2764 -2770

13
2015
Robust Covariate Shift Regression

Brian D. Ziebart , Anqi Liu , Mathew Monfort , Xiangli Chen
international conference on artificial intelligence and statistics 1270 -1279

29
2016
Adversarial Multiclass Classification: A Risk Minimization Perspective

Brian D. Ziebart , Anqi Liu , Kaiser Asif , Rizal Fathony
neural information processing systems 29 559 -567

7
2016
A Minimax Robust Approach for Learning to Assist Users with Pointing Tasks

Brian D. Ziebart , Sima Behpour
national conference on artificial intelligence 6 -7

2015
Adversarial inverse optimal control for general imitation learning losses and embodiment transfer

Brian D. Ziebart , Peter Carr , Mathew Monfort , Xiangli Chen
uncertainty in artificial intelligence 102 -111

7
2016
Adversarial Surrogate Losses for Ordinal Regression

Brian D. Ziebart , Rizal Fathony , Mohammad Ali Bashiri
neural information processing systems 30 563 -573

14
2017
2
2017
ARC: Adversarial Robust Cuts for Semi-Supervised and Multi-Label Classification.

Brian D. Ziebart , Wei Xing , Sima Behpour
national conference on artificial intelligence 2704 -2711

3
2018
Efficient and Consistent Adversarial Bipartite Matching

Brian D. Ziebart , Xinhua Zhang , Sima Behpour , Rizal Fathony
international conference on machine learning 1456 -1465

9
2018
Policy-Conditioned Uncertainty Sets for Robust Markov Decision Processes

Brian D. Ziebart , Marek Petrik , Xiangli Chen , Andrea Tirinzoni
neural information processing systems 31 8939 -8949

20
2018