Stochastic Gradient Geodesic MCMC Methods

Jun Zhu , Yang Song , Chang Liu
neural information processing systems 29 3009 -3017

18
2016
Constructing Unrestricted Adversarial Examples with Generative Models

Stefano Ermon , Yang Song , Nate Kushman , Rui Shu
arXiv: Learning

225
2018
Sliced Score Matching: A Scalable Approach to Density and Score Estimation

Stefano Ermon , Yang Song , Jiaxin Shi , Sahaj Garg
arXiv: Learning

133
2019
730
2019
MintNet: Building Invertible Neural Networks with Masked Convolutions

Stefano Ermon , Yang Song , Chenlin Meng
arXiv: Learning

53
2019
PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples

Stefano Ermon , Sebastian Nowozin , Taesup Kim , Yang Song
international conference on learning representations

694
2017
Accelerating Natural Gradient with Higher-Order Invariance

Stefano Ermon , Jiaming Song , Yang Song
international conference on machine learning 4713 -4722

12
2018
Training deep neural networks via direct loss minimization

Alexander G. Schwing , Richard S. Zemel , Raquel Urtasun , Yang Song
international conference on machine learning 2169 -2177

57
2016
Efficient Graph Generation with Graph Recurrent Attention Networks

David Duvenaud , Renjie Liao , Yujia Li , Shenlong Wang
arXiv: Learning

215
2019
Unsupervised Out-of-Distribution Detection with Batch Normalization.

Stefano Ermon , Jiaming Song , Yang Song
arXiv: Learning

14
2019
Towards Certified Defense for Unrestricted Adversarial Attacks

Stefano Ermon , Shengjia Zhao , Yang Song

2019
Training Deep Energy-Based Models with f-Divergence Minimization

Stefano Ermon , Lantao Yu , Jiaming Song , Yang Song
arXiv: Learning

28
2020
Improved Techniques for Training Score-Based Generative Models

Stefano Ermon , Yang Song
arXiv: Learning

260
2020
Permutation Invariant Graph Generation via Score-Based Generative Modeling

Stefano Ermon , Aditya Grover , Shengjia Zhao , Jiaming Song
international conference on artificial intelligence and statistics 4474 -4484

65
2020
Imitation with Neural Density Models

Stefano Ermon , Yanan Sui , Jiaming Song , Yang Song
arXiv: Learning

7
2021
Autoregressive Score Matching

Stefano Ermon , Lantao Yu , Jiaming Song , Yang Song
neural information processing systems 33 6673 -6683

6
2020
Efficient Learning of Generative Models via Finite-Difference Score Matching.

Stefano Ermon , Kun Xu , Jun Zhu , Chongxuan Li
neural information processing systems 33 19175 -19188

6
2020
Diversity can be Transferred: Output Diversification for White- and Black-box Attacks.

Stefano Ermon , Yang Song , Yusuke Tashiro
neural information processing systems 33 4536 -4548

44
2020
Score-Based Generative Modeling through Stochastic Differential Equations

Stefano Ermon , Diederik P. Kingma , Ben Poole , Abhishek Kumar
arXiv: Learning

692
2020
Learning Energy-Based Models by Diffusion Recovery Likelihood

Diederik P Kingma , Ying Nian Wu , Ben Poole , Yang Song
international conference on learning representations

47
2021