TRAINING MACHINE LEARNING MODELS

De Freitas Joao Ferdinando Gomes , Colmenarejo Sergio Gomez , Denil Misha Man Ray , Andrychowicz Marcin

2
2019
MODULATING AGENT BEHAVIOR TO OPTIMIZE LEARNING PROGRESS

Tom Schaul , Diana Luiza Borsa , Fengning Ding , David Szepesvari

2021
Universal Value Function Approximators

Tom Schaul , Daniel Horgan , David Silver , Karol Gregor
international conference on machine learning 1312 -1320

936
2015
General video game playing

Tom Schaul , Risto Miikkulainen , Simon M. Lucas , Graham Kendall
computational intelligence and games 6 77 -83

63
2013
Artificial curiosity for autonomous space exploration

Vincent Graziano , Tobias Glasmachers , Tom Schaul , Leonard Pape
Acta Futura

11
2011
Q-error as a selection mechanism in modular reinforcement-learning systems

Tom Schaul , Mark Ring
international joint conference on artificial intelligence 1452 -1457

7
2011
Ontogenetic and Phylogenetic Reinforcement Learning

Tom Schaul , Julian Togelius , Daan Wierstra , Christian Igel
Künstliche Intelligenz 23 ( 3) 30 -33

37
2009
Dueling network architectures for deep reinforcement learning

Tom Schaul , Marc Lanctot , Nando De Freitas , Ziyu Wang
international conference on machine learning 1995 -2003

3,451
2016
Unifying Count-Based Exploration and Intrinsic Motivation

Tom Schaul , Remi Munos , David Saxton , Georg Ostrovski
arXiv: Artificial Intelligence

1,259
2016
Reinforcement Learning with Unsupervised Auxiliary Tasks

Tom Schaul , Volodymyr Mnih , Koray Kavukcuoglu , Joel Z Leibo
international conference on learning representations

1,147
2016
General Video Game AI: competition, challenges, and opportunities

Tom Schaul , Spyridon Samothrakis , Julian Togelius , Simon M. Lucas
national conference on artificial intelligence 4335 -4337

201
2016
FeUdal Networks for Hierarchical Reinforcement Learning

Alexander Sasha Vezhnevets , Tom Schaul , Koray Kavukcuoglu , Simon Osindero
international conference on machine learning 3540 -3549

798
2017
StarCraft II: A New Challenge for Reinforcement Learning

Sergey Bartunov , Alexander Sasha Vezhnevets , Tom Schaul , Karen Simonyan
arXiv: Learning

814
2017
Natural Value Approximators: Learning when to Trust Past Estimates

David Silver , Andre Barreto , Hado P. van Hasselt , Tom Schaul
neural information processing systems 30 2120 -2128

3
2017
Unicorn: Continual learning with a universal, off-policy agent

Tom Schaul , Daniel J. Mankowitz , Matteo Hessel , Junhyuk Oh
arXiv: Learning

39
2018
Ray Interference: a Source of Plateaus in Deep Reinforcement Learning

Tom Schaul , Razvan Pascanu , Joseph Modayil , Diana Borsa
arXiv: Learning

53
2019
Non-Differentiable Supervised Learning with Evolution Strategies and Hybrid Methods.

Tom Schaul , Karel Lenc , Karen Simonyan , Erich Elsen
arXiv: Neural and Evolutionary Computing

6
2019
A Linear Time Natural Evolution Strategy for Non-Separable Functions

Tom Schaul , Faustino Gomez , Juergen Schmidhuber , Yi Sun
arXiv: Artificial Intelligence

30
2011
No More Pesky Learning Rates

Tom Schaul , Yann LeCun , Sixin Zhang
arXiv: Machine Learning

503
2012