2
2010
A Finite-Time Analysis of Multi-armed Bandits Problems with Kullback-Leibler Divergences

Rémi Munos , Odalric-Ambrym Maillard , Gilles Stoltz
conference on learning theory 18

70
2011
Complexity versus agreement for many views: co-regularization for multi-view semi-supervised learning

Nicolas Vayatis , Odalric-Ambrym Maillard
algorithmic learning theory 232 -246

1
2009
Optimal Regret Bounds for Selecting the State Representation in Reinforcement Learning

Daniil Ryabko , Odalric-Ambrym Maillard , Ronald Ortner , Phuong Nguyen
international conference on machine learning 543 -551

18
2013
Competing with an Infinite Set of Models in Reinforcement Learning

Daniil Ryabko , Ronald Ortner , Phuong Nguyen , Odalric-Ambrym Maillard
international conference on artificial intelligence and statistics 31 463 -471

8
2013
How hard is my MDP?" The distribution-norm to the rescue"

Odalric-Ambrym Maillard , Timothy A Mann , Shie Mannor
neural information processing systems 27 1835 -1843

54
2014
Latent Bandits.

Odalric-Ambrym Maillard , Shie Mannor
international conference on machine learning

44
2014
Pliable rejection sampling

Alexandra Carpentier , Michal Valko , Odalric-Ambrym Maillard , Akram Erraqabi
international conference on machine learning 2121 -2129

2
2016
Spectral Learning from a Single Trajectory under Finite-State Policies

Odalric-Ambrym Maillard , Borja Balle
international conference on machine learning 361 -370

1
2017
Boundary Crossing for General Exponential Families

Odalric-Ambrym Maillard
algorithmic learning theory 1 151 -184

1
2017
Practical Open-Loop Optimistic Planning

Odalric-Ambrym Maillard , Edouard Leurent , Edouard Leurent
arXiv: Learning

2019
10
2019
Learning Multiple Markov Chains via Adaptive Allocation

Odalric-Ambrym Maillard , Mohammad Sadegh Talebi
arXiv: Learning

2019
Selecting Near-Optimal Approximate State Representations in Reinforcement Learning

Daniil Ryabko , Odalric-Ambrym Maillard , Ronald Ortner
arXiv: Learning

4
2014
Streaming kernel regression with provably adaptive mean, variance, and regularization

Odalric-Ambrym Maillard , Joelle Pineau , Audrey Durand
Journal of Machine Learning Research 19 ( 1) 650 -683

11
2018
Efficient tracking of a growing number of experts

Odalric-Ambrym Maillard , Jaouad Mourtada
algorithmic learning theory 76 517 -539

4
2017