作者: G. A. T. F. da Costa
DOI: 10.1007/S11005-016-0858-2
关键词: Context (language use) 、 Feynman diagram 、 Planar graph 、 Euler's formula 、 Mathematics 、 Identity (mathematics) 、 Infinite product 、 Polynomial 、 Lie superalgebra 、 Combinatorics
摘要: The Feynman identity (FI) of a planar graph relates the Euler polynomial to an infinite product over equivalence classes closed nonperiodic signed cycles in graph. main objectives this paper are compute number given length and sign interpret data encoded by FI context free Lie superalgebras. This solves case graphs problem first raised Sherman sets as denominator superalgebra generated from Other results obtained. For instance, connection with zeta functions graphs.