The Feynman Identity for Planar Graphs

作者: G. A. T. F. da Costa

DOI: 10.1007/S11005-016-0858-2

关键词: Context (language use)Feynman diagramPlanar graphEuler's formulaMathematicsIdentity (mathematics)Infinite productPolynomialLie superalgebraCombinatorics

摘要: The Feynman identity (FI) of a planar graph relates the Euler polynomial to an infinite product over equivalence classes closed nonperiodic signed cycles in graph. main objectives this paper are compute number given length and sign interpret data encoded by FI context free Lie superalgebras. This solves case graphs problem first raised Sherman sets as denominator superalgebra generated from Other results obtained. For instance, connection with zeta functions graphs.

参考文章(20)
Seok-Jin Kang, Myung-Hwan Kim, Dimension formula for graded Lie algebras and its applications Transactions of the American Mathematical Society. ,vol. 351, pp. 4281- 4336 ,(1999) , 10.1090/S0002-9947-99-02239-4
Seok-Jin Kang, Jae-Hoon Kwon, Graded Lie superalgebras, supertrace formula,and orbit Lie superalgebras Proceedings of The London Mathematical Society. ,vol. 81, pp. 675- 724 ,(2000) , 10.1112/S0024611500012661
Daniel Andrén, Klas Markström, The bivariate Ising polynomial of a graph Discrete Applied Mathematics. ,vol. 157, pp. 2515- 2524 ,(2009) , 10.1016/J.DAM.2009.02.021
G. A. T. F. DA Costa, J. Variane, Feynman Identity: A Special Case Revisited Letters in Mathematical Physics. ,vol. 73, pp. 221- 235 ,(2005) , 10.1007/S11005-005-0019-5
G. A. T. F. da Costa, Feynman identity: A special case. I Journal of Mathematical Physics. ,vol. 38, pp. 1014- 1034 ,(1997) , 10.1063/1.531881
Seok-Jin Kang, Myung-Hwan Kim, Free Lie Algebras, Generalized Witt Formula, and the Denominator Identity☆ Journal of Algebra. ,vol. 183, pp. 560- 594 ,(1996) , 10.1006/JABR.1996.0233
A.A. Terras, H.M. Stark, Zeta functions of finite graphs and coverings, III Advances in Mathematics. ,vol. 208, pp. 467- 489 ,(1996) , 10.1016/J.AIM.2006.03.002
S. Sherman, Combinatorial aspects of the Ising model for ferromagnetism. II. An analogue to the Witt identity Bulletin of the American Mathematical Society. ,vol. 68, pp. 225- 229 ,(1962) , 10.1090/S0002-9904-1962-10756-3
Delia Garijo, Andrew Goodall, Jaroslav Nešetřil, Distinguishing graphs by their left and right homomorphism profiles The Journal of Combinatorics. ,vol. 32, pp. 1025- 1053 ,(2011) , 10.1016/J.EJC.2011.03.012