作者: T Schroeter , M Rupp , K Hansen , K-R Müller , G Schneider
DOI: 10.1186/1752-153X-3-S1-P15
关键词: Theoretical computer science 、 Computational biology 、 Peroxisome proliferator-activated receptor 、 Kernel (statistics) 、 Molecular graph 、 Receptor 、 Computer science 、 Graph kernel 、 Nuclear receptor 、 Transcription factor 、 Virtual screening
摘要: For a virtual screening study, we introduce combination of machine learning techniques, employing graph kernel, Gaussian process regression and clustered cross-validation. The aim was to find ligands peroxisome-proliferator activated receptor gamma (PPAR-y). receptors in the PPAR family belong steroid-thyroid-retinoid superfamily nuclear act as transcription factors. They play role regulation lipid glucose metabolism vertebrates are linked various human processes diseases. this used dataset 176 PPAR-y agonists published by Ruecker et al. ...