Formal power series, operator calculus, and duality on Lie algebras

作者: Philip Feinsilver , René Schott

DOI: 10.1016/S0012-365X(97)00113-1

关键词: Graded Lie algebraAdjoint representation of a Lie algebraCombinatoricsUniversal enveloping algebraDiscrete mathematicsAlgebraLie conformal algebraCasimir elementMathematicsFormal groupLie algebraNilpotent Lie algebra

摘要: This paper presents an operator calculus approach to computing with non-commutative variables. First, we recall the product formulation of formal exponential series. Then show how formulate canonical boson on is used represent action a Lie algebra its universal enveloping algebra. As applications, Hamilton's equations for general Hamiltonian, given as series, are found using double-dual representation, and adjoint representation given. With these techniques one can Volterra acting We illustrate three-step nilpotent

参考文章(28)
Philip Feinsilver, René Schott, Algebraic Structures and Operator Calculus Springer Netherlands. ,(1993) , 10.1007/978-94-009-0157-5
Philip J. Feinsilver, René Schott, Representations and probability theory Kluwer Academic. ,(1993)
Jean Berstel, Christophe Reutenauer, Les séries rationnelles et leurs langages Masson. ,(1984)
P. Feinsilver, R. Schott, Krawtchouk Polynomials and Finite Probability Theory Probability Measures on Groups X. pp. 129- 135 ,(1991) , 10.1007/978-1-4899-2364-6_9
P. Feinsilver, R. Schott, An Operator Calculus Approach to the Evolution of Dynamic Data Structures mathematical foundations of computer science. pp. 574- 586 ,(1995) , 10.1007/3-540-60246-1_162
S. Shankar Sastry, Richard M. Murray, Li Zexiang, A Mathematical Introduction to Robotic Manipulation ,(1994)
Paul André Meyer, Quantum Probability for Probabilists ,(1993)
J. Wei, E. Norman, ON GLOBAL REPRESENTATIONS OF THE SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS AS A PRODUCT OF EXPONENTIALS Proceedings of the American Mathematical Society. ,vol. 15, pp. 327- 334 ,(1964) , 10.1090/S0002-9939-1964-0160009-0
H. J. Sussmann, A General Theorem on Local Controllability SIAM Journal on Control and Optimization. ,vol. 25, pp. 158- 194 ,(1987) , 10.1137/0325011