Emulating the CFHTLenS weak lensing data: Cosmological constraints from moments and Minkowski functionals

作者: Andrea Petri , Jia Liu , Zoltán Haiman , Morgan May , Lam Hui

DOI: 10.1103/PHYSREVD.91.103511

关键词: RedshiftOmegaField (mathematics)Weak gravitational lensingSigmaParameter spaceCombinatoricsQuartic functionPhysicsMinkowski space

摘要: Weak gravitational lensing is a powerful cosmological probe, with non-Gaussian features potentially containing the majority of information. We examine constraints on parameter triplet $({\mathrm{\ensuremath{\Omega}}}_{m},w,{\ensuremath{\sigma}}_{8})$ from weak convergence field, including set moments (up to fourth order) and Minkowski functionals, using publicly available data $154\text{ }\text{ }{\mathrm{deg}}^{2}$ CFHTLenS survey. utilize suite ray-tracing N-body simulations spanning 91 points in space, replicating galaxy sky positions, redshifts shape noise catalogs. then build an emulator that interpolates simulated descriptors as function $({\mathrm{\ensuremath{\Omega}}}_{m},w,{\ensuremath{\sigma}}_{8})$, use it compute likelihood constraints. employ principal component analysis reduce dimensionality help stabilize respect number bins used construct each statistic. Using full statistics, we find ${\mathrm{\ensuremath{\Sigma}}}_{8}\ensuremath{\equiv}{\ensuremath{\sigma}}_{8}({\mathrm{\ensuremath{\Omega}}}_{m}/0.27{)}^{0.55}=0.75\ifmmode\pm\else\textpm\fi{}0.04$ (68% C.L.), agreement previous values. $({\mathrm{\ensuremath{\Omega}}}_{m},{\ensuremath{\sigma}}_{8})$ doublet functionals suffer strong bias. However, high-order break degeneracy provide tight constraint these parameters no apparent The main contribution comes quartic derivatives.

参考文章(64)
Matias Zaldarriaga, Roman Scoccimarro, Higher-order moments of the lensing shear and other spin two fields arXiv: Astrophysics. ,(2002) , 10.1086/345789
F. Bernardeau, L. Van Waerbeke, Y. Mellier, Weak lensing statistics as a probe of {OMEGA} and power spectrum. Astronomy and Astrophysics. ,vol. 322, pp. 1- 18 ,(1997)
C. Heymans, J. Coupon, E. Semboloni, T. D. Kitching, K. Kuijken, T. Schrabback, T. Schrabback, B. T. P. Rowe, N. Benítez, H. Hildebrandt, L. Miller, H. Hoekstra, M. J. Hudson, M. J. Hudson, L. Fu, M. Velander, M. Velander, J. Benjamin, T. Erben, C. Bonnett, L. van Waerbeke, Y. Mellier, CFHTLenS: Improving the quality of photometric redshifts with precision photometry Monthly Notices of the Royal Astronomical Society. ,vol. 421, pp. 2355- 2367 ,(2012) , 10.1111/J.1365-2966.2012.20468.X
Anthony Challinor, Antony Lewis, Anthony Lasenby, Efficient computation of CMB anisotropies in closed FRW models The Astrophysical Journal. ,vol. 538, pp. 473- 476 ,(2000) , 10.1086/309179
Martin Kilbinger, Peter Schneider, None, Cosmological parameters from combined second- and third-order aperture mass statistics of cosmic shear Astronomy and Astrophysics. ,vol. 442, pp. 69- 83 ,(2005) , 10.1051/0004-6361:20053531
Bhuvnesh Jain, Masahiro Takada, Cosmological parameters from lensing power spectrum and bispectrum tomography Monthly Notices of the Royal Astronomical Society. ,vol. 348, pp. 897- 915 ,(2004) , 10.1111/J.1365-2966.2004.07410.X
Peter Schneider, Marco Lombardi, The three-point correlation function of cosmic shear: I. The natural components Astronomy and Astrophysics. ,vol. 397, pp. 809- 818 ,(2003) , 10.1051/0004-6361:20021541
Emiliano Sefusatti, Martín Crocce, Sebastián Pueblas, Román Scoccimarro, Cosmology and the Bispectrum Physical Review D. ,vol. 74, pp. 023522- ,(2006) , 10.1103/PHYSREVD.74.023522
Joel Bergé, Adam Amara, Alexandre Réfrégier, OPTIMAL CAPTURE OF NON-GAUSSIANITY IN WEAK-LENSING SURVEYS: POWER SPECTRUM, BISPECTRUM, AND HALO COUNTS The Astrophysical Journal. ,vol. 712, pp. 992- 1002 ,(2010) , 10.1088/0004-637X/712/2/992
Bhuvnesh Jain, Ludovic Van Waerbeke, Statistics of Dark Matter Halos from Gravitational Lensing The Astrophysical Journal. ,vol. 530, pp. L1- L4 ,(2000) , 10.1086/312480