Spatial Microstimuli in Endothelial Mechanosignaling

作者: Peter F. Davies , Jenny Zilberberg , Brian P. Helmke

DOI: 10.1161/01.RES.0000060201.41923.88

关键词: Mechanism (biology)Cell biologyEndothelial stem cellLive cell imagingCellCytoskeletonMechanotransductionSpatial organizationBiologyMicrostimulation

摘要: Descriptive and quantitative analyses of microstimuli in living endothelial cells strongly support an integrated mechanism mechanotransduction regulated by the spatial organization multiple structural signaling networks. Endothelial responses to blood flow are at levels extending over scales from vascular beds single cells, subcellular structures, individual molecules. Microstimuli cellular exhibit temporal complexities that increasingly accessible measurement. We address cell physical interface between flow-related forces biomechanical cell. Live imaging computational dynamics, two important approaches microstimulation this scale, briefly reviewed.

参考文章(93)
Song Li, Peter Butler, Yingxiao Wang, Yingli Hu, Dong Cho Han, Shunichi Usami, Jun-Lin Guan, Shu Chien, None, The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 99, pp. 3546- 3551 ,(2002) , 10.1073/PNAS.052018099
N Wang, J. Butler, D. Ingber, Mechanotransduction across the cell surface and through the cytoskeleton Science. ,vol. 260, pp. 1124- 1127 ,(1993) , 10.1126/SCIENCE.7684161
Farshid Guilak, Compression-induced changes in the shape and volume of the chondrocyte nucleus Journal of Biomechanics. ,vol. 28, pp. 1529- 1541 ,(1995) , 10.1016/0021-9290(95)00100-X
Miri Yoon, Robert D. Moir, Veena Prahlad, Robert D. Goldman, Motile Properties of Vimentin Intermediate Filament Networks in Living Cells Journal of Cell Biology. ,vol. 143, pp. 147- 157 ,(1998) , 10.1083/JCB.143.1.147
R. L. Satcher, S. R. Bussolari, M. A. Gimbrone, C. F. Dewey, The distribution of fluid forces on model arterial endothelium using computational fluid dynamics. Journal of Biomechanical Engineering-transactions of The Asme. ,vol. 114, pp. 309- 316 ,(1992) , 10.1115/1.2891388
James N. Topper, Michael A. Gimbrone Jr, Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype Molecular Medicine Today. ,vol. 5, pp. 40- 46 ,(1999) , 10.1016/S1357-4310(98)01372-0
Beat Ludin, Andrew Matus, GFP illuminates the cytoskeleton Trends in Cell Biology. ,vol. 8, pp. 72- 77 ,(1998) , 10.1016/S0962-8924(98)80015-9
Peter F. Davies, Trevor Mundel, Kenneth A. Barbee, A mechanism for heterogeneous endothelial responses to flow in vivo and in vitro. Journal of Biomechanics. ,vol. 28, pp. 1553- 1560 ,(1995) , 10.1016/0021-9290(95)00102-6
N. DePaola, P. F. Davies, W. F. Pritchard, L. Florez, N. Harbeck, D. C. Polacek, Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro Proceedings of the National Academy of Sciences of the United States of America. ,vol. 96, pp. 3154- 3159 ,(1999) , 10.1073/PNAS.96.6.3154
S. Gudi, J. P. Nolan, J. A. Frangos, Modulation of GTPase Activity of G Proteins by Fluid Shear Stress and Phospholipid Composition Proceedings of the National Academy of Sciences of the United States of America. ,vol. 95, pp. 2515- 2519 ,(1998) , 10.1073/PNAS.95.5.2515