Quantization of discretized spacetimes and the correspondence principle

作者: Roman R. Zapatrin , Ioannis Raptis

DOI:

关键词: Quantization (physics)Algebraic numberDuality (optimization)SpacetimePhysicsQuantum mechanicsCorrespondence principleFinitaryQuantumPure mathematicsManifold

摘要: An algebraic quantization procedure for discretized spacetime models is suggested based on the duality between finitary substitutes and their incidence algebras. The provided limiting that yields conventional manifold characteristics of structures interpreted in quantum framework as a correspondence principle.

参考文章(11)
Rafael D. Sorkin, A Specimen of Theory Construction from Quantum Gravity arXiv: General Relativity and Quantum Cosmology. pp. 167- 179 ,(1995) , 10.1007/978-94-011-0037-3_8
Roman B. Breslav, Roman R. Zapatrin, Differential Structure of Greechie Logics arXiv: Quantum Physics. ,(2000) , 10.1023/A:1003698307300
R. R. Zapatrin, Finitary Algebraic Superspace International Journal of Theoretical Physics. ,vol. 37, pp. 799- 816 ,(1998) , 10.1023/A:1026668513425
David Finkelstein, Space-Time Code Physical Review. ,vol. 184, pp. 1261- 1271 ,(1969) , 10.1103/PHYSREV.184.1261
Rafael D. Sorkin, Finitary substitute for continuous topology International Journal of Theoretical Physics. ,vol. 30, pp. 923- 947 ,(1991) , 10.1007/BF00673986
Luca Bombelli, Joohan Lee, David Meyer, Rafael D. Sorkin, Space-time as a causal set Physical Review Letters. ,vol. 59, pp. 521- 524 ,(1987) , 10.1103/PHYSREVLETT.59.521
David Finkelstein, “Superconducting” causal nets International Journal of Theoretical Physics. ,vol. 27, pp. 473- 519 ,(1988) , 10.1007/BF00669395
Folkert Müller-Hoissen, Aristophanes Dimakis, Discrete Riemannian geometry Journal of Mathematical Physics. ,vol. 40, pp. 1518- 1548 ,(1999) , 10.1063/1.532819
R P Stanley, Enumerative combinatorics ,(1986)
D. Meyer, R. D. Sorkin, L. Bombelli, J. Lee, Spacetime as a Causal Set General Relativity and Gravitation. pp. 718- ,(1989)