Finitary Algebraic Superspace

作者: R. R. Zapatrin

DOI: 10.1023/A:1026668513425

关键词:

摘要: An algebraic scheme is suggested in whichdiscretized spacetime turns out to be a quantumobservable. As an example, toy model producingspacetimes of four points with different topologies ispresented. The possibility incorporating this schemeinto the framework noncommutative differentialgeometry discussed.

参考文章(14)
A.P. Balachandran, G. Bimonte, E. Ercolessi, G. Landi, F. Lizzi, G. Sparano, P. Teotonio-Sobrinho, Noncommutative lattices as finite approximations Journal of Geometry and Physics. ,vol. 18, pp. 163- 194 ,(1996) , 10.1016/0393-0440(95)00006-2
R. R. Zapatrin, MATRIX MODELS FOR SPACETIME TOPODYNAMICS arXiv: General Relativity and Quantum Cosmology. ,(1995)
C. J. Isham, Quantum logic and the histories approach to quantum theory Journal of Mathematical Physics. ,vol. 35, pp. 2157- 2185 ,(1994) , 10.1063/1.530544
Gian -Carlo Rota, On the foundations of combinatorial theory I. Theory of Möbius Functions Probability Theory and Related Fields. ,vol. 2, pp. 340- 368 ,(1964) , 10.1007/BF00531932
Roman Romanovitz Zapatrin, Pre-Regge calculus: Topology via logic International Journal of Theoretical Physics. ,vol. 32, pp. 279- 299 ,(1993) , 10.1007/BF00673717
Rafael D. Sorkin, Finitary substitute for continuous topology International Journal of Theoretical Physics. ,vol. 30, pp. 923- 947 ,(1991) , 10.1007/BF00673986
Robert Geroch, What is a singularity in general relativity Annals of Physics. ,vol. 48, pp. 526- 540 ,(1968) , 10.1016/0003-4916(68)90144-9
R P Stanley, Enumerative combinatorics ,(1986)