Li diffusion in zircon

作者: D. J. Cherniak , E. B. Watson

DOI: 10.1007/S00410-009-0483-5

关键词: Nuclear chemistryAnalytical chemistryNuclear reactionLithiumSpodumeneChemistryActivation energyZirconArrhenius equationDiffusionAtmospheric temperature range

摘要: Diffusion of Li under anhydrous conditions at 1 atm and fluid-present elevated pressure (1.0–1.2 GPa) has been measured in natural zircon. The source diffusant for 1-atm experiments was ground spodumene, which sealed vacuum silica glass capsules with polished slabs An experiment using a Dy-bearing also conducted to evaluate possible rate-limiting effects on diffusion slow-diffusing REE+3 that might provide charge balance. performed the presence H2O–CO2 fluid were run piston–cylinder apparatus, consisting powdered mixture quartz zircon oxalic acid added produce fluid. Nuclear reaction analysis (NRA) resonant nuclear 7Li(p,γ)8Be used measure profiles experiments. following Arrhenius parameters obtained normal c-axis over temperature range 703–1.151°C spodumene source: $$ D_{\text{Li}} = 7.17 \times 10^{ - 7} { \exp }( 275 \pm 11\,{\text{kJmol}}^{ 1} /{\text{RT}}){\text{m}}^{2} {\text{s}}^{ 1}.$$ Diffusivities are similar transport parallel c-axis, indicating little anisotropy Similar diffusivities found source. is considerably faster than other cations zircon, smaller activation energy diffusion. Although comparatively rapid, zircons will be moderately retentive signatures mid-crustal metamorphic temperatures, but they unlikely retain this information geologically significant times high-grade metamorphism.

参考文章(58)
James F. Ziegler, Jochen P. Biersack, The Stopping and Ranges of Ions in Matter ,(2013)
J. Lindhard, M. Scharff, Energy loss in matter by fast particles of low charge Munksgaard. ,(1968)
R. Byron Bird, Theory of Diffusion Advances in Chemical Engineering. ,vol. 1, pp. 155- 239 ,(1956) , 10.1016/S0065-2377(08)60312-9
Joseph R. Tesmer, Michael Anthony Nastasi, Handbook of modern ion beam materials analysis Materials Research Society. ,(1995)
D.J. Cherniak, E.B. Watson, A study of strontium diffusion in K-feldspar, Na-K feldspar and anorthite using Rutherford Backscattering Spectroscopy Earth and Planetary Science Letters. ,vol. 113, pp. 411- 425 ,(1992) , 10.1016/0012-821X(92)90142-I
Tsuneji Futagami, Minoru Ozima, Siro Nagal, Yasushi Aoki, Experiments on thermal release of implanted noble gases from minerals and their implications for noble gases in lunar soil grains Geochimica et Cosmochimica Acta. ,vol. 57, pp. 3177- 3194 ,(1993) , 10.1016/0016-7037(93)90302-D
L COOGAN, S KASEMANN, S CHAKRABORTY, Rates of hydrothermal cooling of new oceanic upper crust derived from lithium-geospeedometry Earth and Planetary Science Letters. ,vol. 240, pp. 415- 424 ,(2005) , 10.1016/J.EPSL.2005.09.020
J. Räisänen, R. Lappalainen, Analysis of lithium using external proton beams Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms. ,vol. 15, pp. 546- 549 ,(1986) , 10.1016/0168-583X(86)90360-5
D.J. Cherniak, J. Manchester, E.B. Watson, Zr and Hf diffusion in rutile Earth and Planetary Science Letters. ,vol. 261, pp. 267- 279 ,(2007) , 10.1016/J.EPSL.2007.06.027
M. D. D'Agostino, E. A. Kamykowski, F. J. Kuehne, G. M. Padawer, E. J. Schneid, R. L. Schulte, M. C. Stauber, F. R. Swanson, Nuclear techniques for bulk and surface analysis of materials Journal of Radioanalytical Chemistry. ,vol. 43, pp. 421- 438 ,(1978) , 10.1007/BF02519503