An experimental study of Ti and Zr partitioning among zircon, rutile, and granitic melt

作者: Amy E. Hofmann , Michael B. Baker , John M. Eiler

DOI: 10.1007/S00410-013-0873-6

关键词:

摘要: In order to evaluate the effect of trace and minor elements (e.g., P, Y, REEs) on high-temperature solubility Ti in zircon (zrc), we conducted 31 experiments a series synthetic natural granitic compositions [enriched TiO_2 ZrO_2; Al/(Na + K) molar ~1.2] at pressure 10 kbar temperatures ~1,400 1,200 °C. Thirty produced zircon-saturated glasses, which 22 are also saturated rutile (rt). seven experiments, quenched glasses coexist with quartz (qtz). SiO_2 contents liquids range from 68.5 82.3 wt% (volatile free), water concentrations 0.4–7.0 wt%. rutile-saturated melts positively correlated run temperature. Glass ZrO_2 (0.2–1.2 wt%; volatile free) show broad positive correlation temperature and, given T, strongly parameter (Na K 2Ca)/(Si·Al) (all cation fractions). Mole fraction (X^(rt)_(ZrO2)) quartz-saturated runs coupled other 10-kbar qtz-saturated experimental data literature (total 675 °C) yields following temperature-dependent expression: ln(X^(rt)_(ZrO2))+ln(ɑ_(SiO2))=2.638(149)−9969(190)/T(K) , where silica activity ɑ_(SiO2) either coexisting polymorph or silica-undersaturated melt is referenced α-quartz P T each experiment best-fit coefficients their uncertainties (values parentheses) reflect X^(rt)_(ZrO2) . NanoSIMS measurements overgrowths yield values ~100 800 ppm; Coupled for ɑ^(SiO2) ɑ_(TiO2) experiment, (ppm) can be related over °C by ln(Ti ppm)^(zrc)+ln(ɑ_(SiO2))−ln(ɑ_(TiO2))=13.84(71)−12590(1124)/T(K) After accounting differences bulk based granite overlap measured using compositions. literature, this suggests that ≥ 1,100 °C, levels “granitic” do not appear influence zircon. Whether true magmatic crustal hydrous silica-rich 800–700 remains demonstrated. Finally, D^(zrc/melt)_(Ti) (calculated weight basis) presented here 0.007–0.01, relatively independent temperature, broadly consistent determined glass pairs.

参考文章(81)
A D Romig, Joseph Goldstein, Microbeam Analysis 1984 ,(1984)
Helen Simone Degeling, Zircon equilibria in metamorphic rocks The Australian National University. ,(2002) , 10.25911/5D7784E53BBB6
K. GOVINDARAJU, 1994 REPORT ON ZINNWALDITE ZW‐C ANALYSED BY NINETY‐TWO GIT‐IWG MEMBER‐LABORATORIES Geostandards and Geoanalytical Research. ,vol. 18, pp. 1- 42 ,(1994) , 10.1111/J.1751-908X.1994.TB00502.X
T.L. Grove, M.J. Krawczynski, S.R. Sutton, M. Newville, Titanium Oxidation State and Coordination in the Lunar High-Titanium Glass Source Mantle LPI. pp. 2164- ,(2009)
D. J. Cherniak, E. B. Watson, Li diffusion in zircon Contributions to Mineralogy and Petrology. ,vol. 160, pp. 383- 390 ,(2010) , 10.1007/S00410-009-0483-5
John M. Hanchar, Robert J. Finch, Paul W.O. Hoskin, E. Bruce Watson, Daniele J. Cherniak, Anthony N. Mariano, Rare earth elements in synthetic zircon: Part 1. Synthesis, and rare earth element and phosphorus doping American Mineralogist. ,vol. 86, pp. 667- 680 ,(2001) , 10.2138/AM-2001-5-607
Martin Bizzarro, James N. Connelly, Kristine Thrane, Lars E. Borg, Excess hafnium‐176 in meteorites and the early Earth zircon record Geochemistry Geophysics Geosystems. ,vol. 13, ,(2012) , 10.1029/2011GC004003
Robert J. Finch, John M. Hanchar, Paul W. O. Hoskin, Peter C. Burns, Rare-earth elements in synthetic zircon: Part 2. A single-crystal X-ray study of xenotime substitution American Mineralogist. ,vol. 86, pp. 681- 689 ,(2001) , 10.2138/AM-2001-5-608
Yan Luo, John C. Ayers, Experimental measurements of zircon/melt trace-element partition coefficients Geochimica et Cosmochimica Acta. ,vol. 73, pp. 3656- 3679 ,(2009) , 10.1016/J.GCA.2009.03.027
Mary R. Reid, Jorge A. Vazquez, Axel K. Schmitt, Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-zircon geothermometer Contributions to Mineralogy and Petrology. ,vol. 161, pp. 293- 311 ,(2011) , 10.1007/S00410-010-0532-0