Enzyme Surface Glycosylation in the Solid Phase: Improved Activity and Selectivity of Candida Antarctica Lipase B

作者: Melissa L. E. Gutarra , Oscar Romero , Olga Abian , Fernando A. G. Torres , Denise M. G. Freire

DOI: 10.1002/CCTC.201100211

关键词: HydrolysisSodium dodecyl sulfateThermostabilityGlycosylationOrganic chemistryCandida antarcticaLipaseChemistryChemical modificationMethyl butyrate

摘要: Tailor-made oligosaccharides and polymers were investigated for a specific surface glycosylation of Candida antarctica lipase (fraction B) (CAL-B) already immobilized on octyl-Sepharose by interfacial activation. The chemical modification was performed in the N-terminal amino acid enzyme residue using low oxidized aldehyde–dextran through reductive amination. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) indicated that polymer/enzyme conjugates obtained all cases. Circular dichroism experiments revealed interesting conformational changes secondary tertiary structures protein after modification. formed glycosylated biocatalysts more stable, active, selective toward different substrates than unmodified CAL-B. These compared with genetically version CAL-B expressed Pichia pastoris same way. Enzyme thermostability improved Dextran-1500 also genetic glycosylation, retaining 90–96 % activity 24 h at 55 °C. catalytic incorporation dextran (Mw=1500 or 6000) twofold hydrolysis p-nitrophenylbutyrate threefold methyl mandelate pH 7. However, lower both substrates. enantioselectivity increased bioconjugates, Dextran-1500–CAL-B conjugate being most racemic (up to 88.1 % ee pH 5). This demonstrated highest synthetic transesterification butyrate glycerol, 80 % yield monoglyceryl ester 100 % conversion 57 % other polymer–lipase conjugates.

参考文章(21)
E. V. Novikova, E. V. Tishchenko, A. A. Iozep, B. V. Passet, Influence of Synthesis and Isolation Conditions on Properties of Dextran Polyaldehyde Russian Journal of Applied Chemistry. ,vol. 75, pp. 985- 988 ,(2002) , 10.1023/A:1020357301364
B. G. Davis, Mimicking Posttranslational Modifications of Proteins Science. ,vol. 303, pp. 480- 482 ,(2004) , 10.1126/SCIENCE.1093449
Manuel Fuentes, Jorgete V. Maquiese, Benevides C. C. Pessela, Olga Abian, Roberto Fernández-Lafuente, Cesar Mateo, J. M. Guisán, New cationic exchanger support for reversible immobilization of proteins. Biotechnology Progress. ,vol. 20, pp. 284- 288 ,(2008) , 10.1021/BP0342102
Mark J. Kurth, Linker Strategies in Solid-Phase Organic Synthesis Journal of the American Chemical Society. ,vol. 132, pp. 10615- 10615 ,(2010) , 10.1021/JA104455S
Marco Filice, Oscar Romero, Jose M. Guisan, Jose M. Palomo, trans,trans-2,4-Hexadiene incorporation on enzymes for site-specific immobilization and fluorescent labeling Organic and Biomolecular Chemistry. ,vol. 9, pp. 5535- 5540 ,(2011) , 10.1039/C1OB05401E
Andreina Acosta, Marco Filice, Gloria Fernandez-Lorente, Jose M. Palomo, Jose M. Guisan, Kinetically controlled synthesis of monoglyceryl esters from chiral and prochiral acids methyl esters catalyzed by immobilized Rhizomucor miehei lipase. Bioresource Technology. ,vol. 102, pp. 507- 512 ,(2011) , 10.1016/J.BIORTECH.2010.08.095
Timothy L Foley, Michael D Burkart, Site-specific protein modification: advances and applications. Current Opinion in Chemical Biology. ,vol. 11, pp. 12- 19 ,(2007) , 10.1016/J.CBPA.2006.11.036
César A. Godoy, Blanca de las Rivas, Marco Filice, Gloria Fernández-Lorente, Jose M. Guisan, Jose M. Palomo, Enhanced activity of an immobilized lipase promoted by site-directed chemical modification with polymers Process Biochemistry. ,vol. 45, pp. 534- 541 ,(2010) , 10.1016/J.PROCBIO.2009.11.014