Voting-based integration algorithm improves causal network learning from interventional and observational data: An application to cell signaling network inference.

作者: Prasad Tadepalli , Stephen A. Ramsey , Meghamala Sinha

DOI: 10.1371/JOURNAL.PONE.0245776

关键词: Observational studyArtificial intelligenceConstruct (python library)Machine learningInferenceEmpirical researchEconomic modelVotingStatistical powerComputer science

摘要: … , and thus observational datasets are frequently used for causal inference. However, given only … From six published networks, we obtained nine datasets (with associated ground-truth …

参考文章(36)
Judea Pearl, Graphical Models for Probabilistic and Causal Reasoning Computing Handbook, 3rd ed. (1). pp. 367- 389 ,(1998) , 10.1007/978-94-017-1735-9_12
Ingo A. Beinlich, H. J. Suermondt, R. Martin Chavez, Gregory F. Cooper, The ALARM Monitoring System: A Case Study with two Probabilistic Inference Techniques for Belief Networks artificial intelligence in medicine in europe. pp. 247- 256 ,(1989) , 10.1007/978-3-642-93437-7_28
Nir Friedman, Daniel L. Koller, Probabilistic graphical models : principles and techniques The MIT Press. ,(2009)
Judea Pearl, Jin Tian, Causal discovery from changes uncertainty in artificial intelligence. pp. 512- 521 ,(2001)
Frederick Eberhardt, Clark Glymour, Richard Scheines, N-1 Experiments Suffice to Determine the Causal Relations Among N Variables Springer, Berlin, Heidelberg. pp. 97- 112 ,(2006) , 10.1007/3-540-33486-6_4
Clark N. Glymour, Peter Spirtes, Richard Scheines, Causation, prediction, and search ,(1993)
Thomas Richardson, Peter Spirtes, Christopher Meek, Causal inference in the presence of latent variables and selection bias uncertainty in artificial intelligence. pp. 499- 506 ,(1995)
Kevin P. Murphy, Daniel Eaton, Exact Bayesian structure learning from uncertain interventions international conference on artificial intelligence and statistics. pp. 107- 114 ,(2007)
S. L. Lauritzen, D. J. Spiegelhalter, Local computations with probabilities on graphical structures and their application to expert systems Journal of the royal statistical society series b-methodological. ,vol. 50, pp. 415- 448 ,(1990) , 10.1111/J.2517-6161.1988.TB01721.X
Changwon Yoo, Gregory F. Cooper, Causal discovery from a mixture of experimental and observational data uncertainty in artificial intelligence. pp. 116- 125 ,(1999)