Kubo conductivity in two-dimensional Fibonacci lattices

作者: Vicenta Sánchez , Chumin Wang

DOI: 10.1016/J.JNONCRYSOL.2003.08.030

关键词: Function (mathematics)Condensed matter physicsSuperlatticeFibonacci numberKubo formulaQuasiperiodic functionPhysicsRenormalizationElectric fieldConvolution

摘要: Abstract The electronic transport at zero degrees in quasiperiodic systems is investigated by using the Kubo–Greenwood formula and a novel renormalization method, which allows an evaluation exact way of products Green’s function macroscopic Fibonacci chains. analysis properties two-dimensional superlattices double lattices carried out means convolution technique. spectrally averaged conductance shows linear dependence with width system power-law decay as its length increases along applied electric field.

参考文章(5)
Hirokazu Tsunetsugu, Kazuo Ueda, Electronic properties of the Penrose lattice. II. Conductance at zero temperature. Physical Review B. ,vol. 43, pp. 8892- 8902 ,(1991) , 10.1103/PHYSREVB.43.8892
William A. Schwalm, Mizuho K. Schwalm, Extension theory for lattice Green functions. Physical Review B. ,vol. 37, pp. 9524- 9542 ,(1988) , 10.1103/PHYSREVB.37.9524
Vicenta Sánchez, Chumin Wang, Exact results of the Kubo conductivity in macroscopic Fibonacci systems: a renormalization approach Journal of Alloys and Compounds. ,vol. 342, pp. 410- 412 ,(2002) , 10.1016/S0925-8388(02)00266-9
A García-Martín, JJ Sáenz, None, Universal conductance distributions in the crossover between diffusive and localization regimes. Physical Review Letters. ,vol. 87, pp. 116603- 116603 ,(2001) , 10.1103/PHYSREVLETT.87.116603
Vicenta Sánchez, Luis A. Pérez, Raúl Oviedo-Roa, Chumin Wang, Renormalization approach to the Kubo formula in Fibonacci systems Physical Review B. ,vol. 64, pp. 174205- ,(2001) , 10.1103/PHYSREVB.64.174205