Understanding the Variability in Graph Data Sets through Statistical Modeling on the Stiefel Manifold.

作者: Stéphanie Allassonnière , Stanley Durrleman , Clément Mantoux , Federica Cacciamani , Stéphane Epelbaum

DOI: 10.3390/E23040490

关键词: Data setGraph (abstract data type)Adjacency matrixStiefel manifoldStatistical modelAlgorithmNetwork modelSynthetic dataMatrix (mathematics)Computer science

摘要: Network analysis provides a rich framework to model complex phenomena, such as human brain connectivity. It has proven efficient understand their natural properties and design predictive models. In this paper, we study the variability within groups of networks, i.e., structure connection similarities differences across set networks. We propose statistical these variations based on manifold-valued latent factors. Each network adjacency matrix is decomposed weighted sum patterns with rank one. pattern described random perturbation dictionary element. As hierarchical model, it enables heterogeneous populations matrices using mixtures. Our can also be used infer weight missing edges. estimate parameters an Expectation-Maximization-based algorithm. Experimenting synthetic data, show that algorithm able accurately in both low high dimensions. apply our large data functional connectivity from UK Biobank. results suggest proposed describes small number degrees freedom.

参考文章(45)
Linyuan Lü, Tao Zhou, Link prediction in complex networks: A survey Physica A-statistical Mechanics and Its Applications. ,vol. 390, pp. 1150- 1170 ,(2011) , 10.1016/J.PHYSA.2010.11.027
David Banks, Kathleen Carley, Metric inference for social networks Journal of Classification. ,vol. 11, pp. 121- 149 ,(1994) , 10.1007/BF01201026
Stéphanie Allassonnière, Estelle Kuhn, Alain Trouvé, Construction of Bayesian deformable models via a stochastic approximation algorithm: A convergence study Bernoulli. ,vol. 16, pp. 641- 678 ,(2010) , 10.3150/09-BEJ229
Tetsuya Kaneko, Simone Fiori, Toshihisa Tanaka, Empirical Arithmetic Averaging Over the Compact Stiefel Manifold IEEE Transactions on Signal Processing. ,vol. 61, pp. 883- 894 ,(2013) , 10.1109/TSP.2012.2226167
Peter D Hoff, Model Averaging and Dimension Selection for the Singular Value Decomposition Journal of the American Statistical Association. ,vol. 102, pp. 674- 685 ,(2006) , 10.1198/016214506000001310
Alan Edelman, Tomás A. Arias, Steven T. Smith, The Geometry of Algorithms with Orthogonality Constraints SIAM Journal on Matrix Analysis and Applications. ,vol. 20, pp. 303- 353 ,(1999) , 10.1137/S0895479895290954
A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete Data Via theEMAlgorithm Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 39, pp. 1- 22 ,(1977) , 10.1111/J.2517-6161.1977.TB01600.X
Estelle Kuhn, Marc Lavielle, Coupling a stochastic approximation version of EM with an MCMC procedure Esaim: Probability and Statistics. ,vol. 8, pp. 115- 131 ,(2004) , 10.1051/PS:2004007
Vesa Kiviniemi, Juha-Heikki Kantola, Jukka Jauhiainen, Aapo Hyvärinen, Osmo Tervonen, Independent component analysis of nondeterministic fMRI signal sources. NeuroImage. ,vol. 19, pp. 253- 260 ,(2003) , 10.1016/S1053-8119(03)00097-1