Detection and Visualization of Subspace Cluster Hierarchies

作者: Elke Achtert , Christian Böhm , Hans-Peter Kriegel , Peer Kröger , Ina Müller-Gorman

DOI: 10.1007/978-3-540-71703-4_15

关键词: Visualization modelSubspace topologyVisualizationComputer scienceCluster analysisCurse of dimensionalitySubspace clusteringCluster (physics)Machine learningPattern recognitionLinear subspaceArtificial intelligence

摘要: Subspace clustering (also called projected clustering) addresses the problem that different sets of attributes may be relevant for clusters in high dimensional feature spaces. In this paper, we propose algorithm DiSH (Detecting cluster Hierarchies) improves following points over existing approaches: First, can detect subspaces significantly dimensionality. Second, uncovers complex hierarchies nested subspace clusters, i.e. lower-dimensional are embedded within higher-dimensional clusters. These do not only consist single inclusions, but also exhibit multiple inclusions and thus, modeled using graphs rather than trees. Third, is able to size, shape, density. Furthermore, visualize by means an appropriate visualization model, so-called graph, such relationships between explored at a glance. Several comparative experiments show performance effectivity DiSH.

参考文章(20)
Ramakrishnan Srikant, Rakesh Agrawal, Fast algorithms for mining association rules very large data bases. pp. 580- 592 ,(1998)
Karin Kailing, Hans-Peter Kriegel, Peer Kroger, Density-Connected Subspace Clustering for High-Dimensional Data siam international conference on data mining. pp. 246- 256 ,(2004)
Elke Achtert, Christian Böhm, Hans-Peter Kriegel, Peer Kröger, Ina Müller-Gorman, Arthur Zimek, Finding Hierarchies of Subspace Clusters Lecture Notes in Computer Science. pp. 446- 453 ,(2006) , 10.1007/11871637_42
Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, Prabhakar Raghavan, Automatic subspace clustering of high dimensional data for data mining applications Proceedings of the 1998 ACM SIGMOD international conference on Management of data - SIGMOD '98. ,vol. 27, pp. 94- 105 ,(1998) , 10.1145/276304.276314
Haixun Wang, Wei Wang, Jiong Yang, Philip S. Yu, Clustering by pattern similarity in large data sets Proceedings of the 2002 ACM SIGMOD international conference on Management of data - SIGMOD '02. pp. 394- 405 ,(2002) , 10.1145/564691.564737
Cecilia M. Procopiuc, Michael Jones, Pankaj K. Agarwal, T. M. Murali, A Monte Carlo algorithm for fast projective clustering Proceedings of the 2002 ACM SIGMOD international conference on Management of data - SIGMOD '02. pp. 418- 427 ,(2002) , 10.1145/564691.564739
Ramakrishnan Srikant, Rakesh Agrawal, Mining quantitative association rules in large relational tables international conference on management of data. ,vol. 25, pp. 1- 12 ,(1996) , 10.1145/233269.233311
Chun-Hung Cheng, Ada Waichee Fu, Yi Zhang, None, Entropy-based subspace clustering for mining numerical data knowledge discovery and data mining. pp. 84- 93 ,(1999) , 10.1145/312129.312199
Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu, Cecilia Procopiuc, Jong Soo Park, Fast algorithms for projected clustering international conference on management of data. ,vol. 28, pp. 61- 72 ,(1999) , 10.1145/304181.304188
Christian Böhm, Karin Kailing, Peer Kröger, Arthur Zimek, None, Computing Clusters of Correlation Connected objects international conference on management of data. pp. 455- 466 ,(2004) , 10.1145/1007568.1007620