Finding Hierarchies of Subspace Clusters

作者: Elke Achtert , Christian Böhm , Hans-Peter Kriegel , Peer Kröger , Ina Müller-Gorman

DOI: 10.1007/11871637_42

关键词: Cluster analysisComputer scienceFeature (machine learning)Knowledge extractionPattern recognitionLinear subspaceFeature vectorSubspace topologyArtificial intelligenceData setRandom subspace method

摘要: Many clustering algorithms are not applicable to high-dimensional feature spaces, because the clusters often exist only in specific subspaces of original space. Those also called subspace clusters. In this paper, we propose algorithm HiSC (Hierarchical Subspace Clustering) that can detect hierarchies nested clusters, i.e. relationships lower-dimensional embedded within higher-dimensional Several comparative experiments using synthetic and real data sets show performance effectivity HiSC.

参考文章(12)
Karin Kailing, Hans-Peter Kriegel, Peer Kroger, Density-Connected Subspace Clustering for High-Dimensional Data siam international conference on data mining. pp. 246- 256 ,(2004)
Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, Prabhakar Raghavan, Automatic subspace clustering of high dimensional data for data mining applications Proceedings of the 1998 ACM SIGMOD international conference on Management of data - SIGMOD '98. ,vol. 27, pp. 94- 105 ,(1998) , 10.1145/276304.276314
Cecilia M. Procopiuc, Michael Jones, Pankaj K. Agarwal, T. M. Murali, A Monte Carlo algorithm for fast projective clustering Proceedings of the 2002 ACM SIGMOD international conference on Management of data - SIGMOD '02. pp. 418- 427 ,(2002) , 10.1145/564691.564739
Chun-Hung Cheng, Ada Waichee Fu, Yi Zhang, None, Entropy-based subspace clustering for mining numerical data knowledge discovery and data mining. pp. 84- 93 ,(1999) , 10.1145/312129.312199
Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu, Cecilia Procopiuc, Jong Soo Park, Fast algorithms for projected clustering international conference on management of data. ,vol. 28, pp. 61- 72 ,(1999) , 10.1145/304181.304188
Christian Bohm, K Railing, H-P Kriegel, Peer Kroger, Density connected clustering with local subspace preferences international conference on data mining. pp. 27- 34 ,(2004) , 10.1109/ICDM.2004.10087
H. Kriegel, P. Kroger, M. Renz, S. Wurst, A generic framework for efficient subspace clustering of high-dimensional data international conference on data mining. pp. 250- 257 ,(2005) , 10.1109/ICDM.2005.5
R. Sibson, SLINK: An optimally efficient algorithm for the single-link cluster method The Computer Journal. ,vol. 16, pp. 30- 34 ,(1973) , 10.1093/COMJNL/16.1.30
Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Jörg Sander, OPTICS: ordering points to identify the clustering structure international conference on management of data. ,vol. 28, pp. 49- 60 ,(1999) , 10.1145/304181.304187
Karin Kailing, Hans-Peter Kriegel, Peer Kröger, None, Density-Connected Subspace Clustering for High-Dimensional Data Proceedings of the 2004 SIAM International Conference on Data Mining. ,(2004) , 10.1137/1.9781611972740.23