Gene expression profiling: Does it add predictive accuracy to clinical characteristics in cancer prognosis?

作者: Daniela Dunkler , Stefan Michiels , Michael Schemper

DOI: 10.1016/J.EJCA.2006.11.018

关键词: BioinformaticsCancerCancer prognosisHead and neck cancerLymph nodeExplained variationClassifier (UML)Breast cancerGene expression profilingMedicine

摘要: It is widely accepted that gene expression classifiers need to be externally validated by showing they predict the outcome well enough on other patients than those from whose data classifier was derived. Unfortunately, gain in predictive accuracy as compared established clinical prognostic factors often not quantified. Our objective illustrate application of appropriate statistical measures for this purpose. In order compare accuracies a model based only and plus classifier, we compute decrease inaccuracy proportion explained variation. These have been obtained three studies published classifiers: survival lymphoma patients, breast cancer diagnosis lymph node metastases head neck cancer. For our results indicate varying possibly small added variation due classifiers. Therefore, future should routinely demonstrated measures, such ones recommend.

参考文章(29)
Alvis Brazma, Pascal Hingamp, John Quackenbush, Gavin Sherlock, Paul Spellman, Chris Stoeckert, John Aach, Wilhelm Ansorge, Catherine A. Ball, Helen C. Causton, Terry Gaasterland, Patrick Glenisson, Frank C.P. Holstege, Irene F. Kim, Victor Markowitz, John C. Matese, Helen Parkinson, Alan Robinson, Ugis Sarkans, Steffen Schulze-Kremer, Jason Stewart, Ronald Taylor, Jaak Vilo, Martin Vingron, Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature Genetics. ,vol. 29, pp. 365- 371 ,(2001) , 10.1038/NG1201-365
Stanley Lemeshow, David W. Hosmer, Applied Logistic Regression ,(1989)
Andreas Rosenwald, George Wright, Wing C. Chan, Joseph M. Connors, Elias Campo, Richard I. Fisher, Randy D. Gascoyne, H. Konrad Muller-Hermelink, Erlend B. Smeland, Jena M. Giltnane, Elaine M. Hurt, Hong Zhao, Lauren Averett, Liming Yang, Wyndham H. Wilson, Elaine S. Jaffe, Richard Simon, Richard D. Klausner, John Powell, Patricia L. Duffey, Dan L. Longo, Timothy C. Greiner, Dennis D. Weisenburger, Warren G. Sanger, Bhavana J. Dave, James C. Lynch, Julie Vose, James O. Armitage, Emilio Montserrat, Armando López-Guillermo, Thomas M. Grogan, Thomas P. Miller, Michel LeBlanc, German Ott, Stein Kvaloy, Jan Delabie, Harald Holte, Peter Krajci, Trond Stokke, Louis M. Staudt, The Use of Molecular Profiling to Predict Survival after Chemotherapy for Diffuse Large-B-Cell Lymphoma The New England Journal of Medicine. ,vol. 346, pp. 1937- 1947 ,(2002) , 10.1056/NEJMOA012914
Robert J Tibshirani, Bradley Efron, An introduction to the bootstrap ,(1993)
Evangelia E Ntzani, John PA Ioannidis, Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment. The Lancet. ,vol. 362, pp. 1439- 1444 ,(2003) , 10.1016/S0140-6736(03)14686-7
Paul Roepman, Lodewyk F A Wessels, Nienke Kettelarij, Patrick Kemmeren, Antony J Miles, Philip Lijnzaad, Marcel G J Tilanus, Ronald Koole, Gert-Jan Hordijk, Peter C van der Vliet, Marcel J T Reinders, Piet J Slootweg, Frank C P Holstege, An expression profile for diagnosis of lymph node metastases from primary head and neck squamous cell carcinomas. Nature Genetics. ,vol. 37, pp. 182- 186 ,(2005) , 10.1038/NG1502
Michael W Kattan, None, Evaluating a new marker's predictive contribution. Clinical Cancer Research. ,vol. 10, pp. 822- 824 ,(2004) , 10.1158/1078-0432.CCR-03-0061
Georg Heinze, Michael Schemper, A solution to the problem of separation in logistic regression Statistics in Medicine. ,vol. 21, pp. 2409- 2419 ,(2002) , 10.1002/SIM.1047
Georg Heinze, Michael Schemper, Comparing the importance of prognostic factors in Cox and logistic regression using SAS Computer Methods and Programs in Biomedicine. ,vol. 71, pp. 155- 163 ,(2003) , 10.1016/S0169-2607(02)00077-9
Michael Schemper, Robin Henderson, Predictive Accuracy and Explained Variation in Cox Regression Biometrics. ,vol. 56, pp. 249- 255 ,(2000) , 10.1111/J.0006-341X.2000.00249.X