The low temperature electrochemical performances of LiFePO4/C/graphene nanofiber with 3D-bridge network structure

作者: Dong Xie , Guanglan Cai , Zhichao Liu , Ruisong Guo , Dandan Sun

DOI: 10.1016/J.ELECTACTA.2016.09.058

关键词: Electrochemical kineticsPolarization (electrochemistry)NanotechnologyConductivityGrapheneCathodeNanofiberElectrodeMaterials scienceElectrochemistryChemical engineering

摘要: Abstract Three-dimensionally assembled LiFePO 4 /C/graphene nanofiber composites were successfully prepared via a suspension mixing method followed by heat-treatment at 400 °C. A faster electron transfer, lower electrochemical polarization as well higher diffusion coefficient of Li + are obtained with the assistance graphene nanofibers. The 5 wt% nanofibers modified electrode (G-5) delivers best kinetics including lowest charge transfer resistance and highest 0 °C −20 °C, respectively. Likewise, G-5 exhibits charge-discharge capability most stable cycling performance low operation temperatures compared those /C, 3 wt% 7 wt% /C (G-3 G-7) composites. shows capacity 92.8 mAh g −1 92.0% retention after 200 cycles 1C −20 °C. reasons for significant improvement performances can be ascribed to enhanced conductivity reduced agglomeration pristine particles due introduction These excellent temperature show that electrodes promising cathode candidates lithium-ion batteries applications temperatures.

参考文章(73)
Dan Li, Yudai Huang, Dianzeng Jia, Zaiping Guo, Shu-Juan Bao, Synthesis and electrochemical properties of nanosized carbon-coated Li1−3x La x FePO4 composites Journal of Solid State Electrochemistry. ,vol. 14, pp. 889- 895 ,(2010) , 10.1007/S10008-009-0875-5
David S. McLachlan, Michael Blaszkiewicz, Robert E. Newnham, Electrical Resistivity of Composites Journal of the American Ceramic Society. ,vol. 73, pp. 2187- 2203 ,(1990) , 10.1111/J.1151-2916.1990.TB07576.X
Xinming Li, Tianshuo Zhao, Kunlin Wang, Ying Yang, Jinquan Wei, Feiyu Kang, Dehai Wu, Hongwei Zhu, Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. Langmuir. ,vol. 27, pp. 12164- 12171 ,(2011) , 10.1021/LA202380G
S. Chatterjee, J.W. Wang, W.S. Kuo, N.H. Tai, C. Salzmann, W.L. Li, R. Hollertz, F.A. Nüesch, B.T.T. Chu, Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites Chemical Physics Letters. ,vol. 531, pp. 6- 10 ,(2012) , 10.1016/J.CPLETT.2012.02.006
Haixia Wu, Qinjiao Liu, Shouwu Guo, Composites of Graphene and LiFePO4 as Cathode Materials for Lithium-Ion Battery: A Mini-review. Nano-micro Letters. ,vol. 6, pp. 316- 326 ,(2014) , 10.1007/S40820-014-0004-6
Houbin Liu, Cui Miao, Yan Meng, Qiang Xu, Xinhe Zhang, Zhiyuan Tang, Effect of graphene nanosheets content on the morphology and electrochemical performance of LiFePO4 particles in lithium ion batteries Electrochimica Acta. ,vol. 135, pp. 311- 318 ,(2014) , 10.1016/J.ELECTACTA.2014.05.028
S QU, S WONG, Piezoresistive behavior of polymer reinforced by expanded graphite Composites Science and Technology. ,vol. 67, pp. 231- 237 ,(2007) , 10.1016/J.COMPSCITECH.2006.08.008
Peter G. Bruce, Bruno Scrosati, Jean-Marie Tarascon, Nanomaterials for rechargeable lithium batteries Angewandte Chemie. ,vol. 47, pp. 2930- 2946 ,(2008) , 10.1002/ANIE.200702505
SR Dhakate, S Sharma, M Borah, RB Mathur, TL Dhami, None, Expanded graphite-based electrically conductive composites as bipolar plate for PEM fuel cell International Journal of Hydrogen Energy. ,vol. 33, pp. 7146- 7152 ,(2008) , 10.1016/J.IJHYDENE.2008.09.004
K.S. Dhindsa, B.P. Mandal, K. Bazzi, M.W. Lin, M. Nazri, G.A. Nazri, V.M. Naik, V.K. Garg, A.C. Oliveira, P. Vaishnava, R. Naik, Z.X. Zhou, Enhanced electrochemical performance of graphene modified LiFePO4 cathode material for lithium ion batteries Solid State Ionics. ,vol. 253, pp. 94- 100 ,(2013) , 10.1016/J.SSI.2013.08.030