On the congruence subgroup problem for branch groups

作者: Alejandra Garrido

DOI: 10.1007/S11856-016-1402-X

关键词: Tree (graph theory)Object (grammar)Graph (abstract data type)Congruence (manifolds)MathematicsCombinatoricsStructure (category theory)Congruence subgroupDiscrete mathematicsGroup (mathematics)

摘要: We answer a question of Bartholdi, Siegenthaler and Zalesskii, showing that the congruence subgroup problem for branch groups is independent action on tree. prove topology group determined by group; specifically, its structure graph, an object first introduced Wilson. also give more natural definition this graph.

参考文章(10)
John S. Wilson, On Just Infinite Abstract and Profinite Groups Birkhäuser Boston. pp. 181- 203 ,(2000) , 10.1007/978-1-4612-1380-2_5
R. I. Grigorchuk, Just Infinite Branch Groups Birkhäuser, Boston, MA. pp. 121- 179 ,(2000) , 10.1007/978-1-4612-1380-2_4
H. Bass, M. Lazard, J-P. Serre, Sous-groupes d'indice fini dans $SL\left( {n,Z} \right)$ Bulletin of the American Mathematical Society. ,vol. 70, pp. 385- 392 ,(1964) , 10.1090/S0002-9904-1964-11107-1
R. I. Grigorchuk, J. S. Wilson, The Uniqueness of the Actions of Certain Branch Groups on Rooted Trees Geometriae Dedicata. ,vol. 100, pp. 103- 116 ,(2003) , 10.1023/A:1025851804561
M. S. Raghunathan, The congruence subgroup problem Proceedings Mathematical Sciences. ,vol. 114, pp. 299- 308 ,(2004) , 10.1007/BF02829437
Laurent Bartholdi, Olivier Siegenthaler, Pavel Zalesskii, The congruence subgroup problem for branch groups Israel Journal of Mathematics. ,vol. 187, pp. 419- 450 ,(2012) , 10.1007/S11856-011-0086-5
J. S. Wilson, Groups with every proper quotient finite Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 69, pp. 373- 391 ,(1971) , 10.1017/S0305004100046818
Alejandra Garrido, John S. Wilson, On subgroups of finite index in branch groups Journal of Algebra. ,vol. 397, pp. 32- 38 ,(2014) , 10.1016/J.JALGEBRA.2013.08.025
Jens L. Mennicke, Finite Factor Groups of the Unimodular Group The Annals of Mathematics. ,vol. 81, pp. 31- ,(1965) , 10.2307/1970380
Jean-Pierre Serre, Sous-groupes d’indice fini dans SL(n,Z) Springer Collected Works in Mathematics. pp. 222- 229 ,(2003) , 10.1007/978-3-642-37726-6_61