On Just Infinite Abstract and Profinite Groups

作者: John S. Wilson

DOI: 10.1007/978-1-4612-1380-2_5

关键词: Normal subgroupProfinite groupMathematicsRing of integersInfinite groupNottingham groupGroup (mathematics)Quotient groupCombinatoricsAbelian group

摘要: An infinite group G is called just if all non-trivial normal subgroups have finite index; profinite it merely required that closed index. Just groups arisen in a variety of contexts. The abstract having abelian are precisely the space whose point act rationally irreducibly on (see McCarthy [7]). Many arithmetic known to be modulo their centres; examples SLn (R) for n ≥ 3 and Sp2n 2, where R ring integers an algebraic number field [1]). Nottingham over \(\mathop \mathbb{F}\nolimits_p\) (described Chapter 6) pro-p Groups. Grigorchuk [3], [4] Gupta Sidki [5] introduced studied some finitely generated p-groups which trees, many, together with completions, infinite. Using Zorn’s Lemma easy see S either or group, then has quotient group. Therefore decide whether group-theoretic property implies finiteness, sometimes sufficient consider groups.

参考文章(10)
Robert Palmer Dilworth, Peter Crawley, Algebraic theory of lattices ,(1973)
P. Hall, Wreath Powers and Characteristically Simple Groups Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 58, pp. 170- 184 ,(1962) , 10.1017/S0305004100036379
R I Grigorchuk, ON THE GROWTH DEGREES OF $ p$-GROUPS AND TORSION-FREE GROUPS Mathematics of The Ussr-sbornik. ,vol. 54, pp. 185- 205 ,(1986) , 10.1070/SM1986V054N01ABEH002967
Narain Gupta, Said Sidki, On the Burnside Problem for Periodic Groups Mathematische Zeitschrift. ,vol. 182, pp. 385- 388 ,(1983) , 10.1007/BF01179757
John S. Wilson, Some properties of groups inherited by normal subgroups of finite index Mathematische Zeitschrift. ,vol. 114, pp. 19- 21 ,(1970) , 10.1007/BF01111865
Donald McCarthy, Infinite groups whose proper quotient groups are finite, I Communications on Pure and Applied Mathematics. ,vol. 21, pp. 545- 562 ,(1968) , 10.1002/CPA.3160210604
John S. Wilson, Groups satisfying the maximal condition for normal subgroups Mathematische Zeitschrift. ,vol. 118, pp. 107- 114 ,(1970) , 10.1007/BF01110179
J. S. Wilson, Groups with every proper quotient finite Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 69, pp. 373- 391 ,(1971) , 10.1017/S0305004100046818
H. Bass, J. Milnor, J. -P. Serre, Solution of the congruence subgroup problem for $SL_n (n \ge 3)$ and $Sp_{2n} (n \ge 2)$ Publications Mathématiques de l'IHÉS. ,vol. 33, pp. 59- 137 ,(1967) , 10.1007/BF02684586