Production of biohydrogen from sugars and lignocellulosic biomass using Thermoanaerobacter GHL15

作者: Hronn Brynjarsdottir , Sean M. Scully , Johann Orlygsson

DOI: 10.1016/J.IJHYDENE.2013.09.005

关键词: ChromatographyHydrolysisBiochemistryBiohydrogenHydrolysateHydrogen productionCelluloseThermoanaerobacterChemistryHydrogenLignocellulosic biomass

摘要: Abstract The effect of culture parameters on hydrogen production using strain GHL15 in batch was investigated. belongs to the genus Thermoanaerobacter with 98.9% similarity yonseiensis and 98.5% keratinophilus a temperature optimum 65–70 °C pH 6–7. metabolizes various pentoses, hexoses, disaccharides acetate, ethanol, hydrogen, carbon dioxide. However substrate inhibition observed above 10 mM glucose concentration. Maximum yields were 3.1 mol H2 mol−1 at very low partial pressure hydrogen. Hydrogen from lignocellulosic biomass hydrolysates investigated culture. Various pretreatment methods examined including acid, base, enzymatic (Celluclast® Novozyme 188) hydrolysis. (5.8–6.0 mmol H2 g−1 dw) Whatman paper (cellulose) although less produced by other materials (maximally 4.83 mmol H2 g−1 dw grass hydrolysate). all improved acid alkaline pretreatments, maximum grass, 7.6 mmol H2 g−1 dw.

参考文章(47)
Jóhann Örlygsson, Arnheiður Rán Almarsdóttir, Alicja Tarazewicz, Ingólfur Bragi Gunnarsson, Hydrogen production from sugars and complex biomass by Clostridium species, AK14, isolated from Icelandic hot spring. Icelandic Agricultural Sciences. pp. 61- 71 ,(2010)
JW Van Groenestijn, JHO Hazewinkel, M Nienoord, PJT Bussmann, Energy aspects of biological hydrogen production in high rate bioreactors operated in the thermophilic temperature range International Journal of Hydrogen Energy. ,vol. 27, pp. 1141- 1147 ,(2002) , 10.1016/S0360-3199(02)00096-4
B C Kim, R Grote, D W Lee, G Antranikian, Y R Pyun, Thermoanaerobacter yonseiensis sp. nov., a novel extremely thermophilic, xylose-utilizing bacterium that grows at up to 85 degrees C. International Journal of Systematic and Evolutionary Microbiology. ,vol. 51, pp. 1539- 1548 ,(2001) , 10.1099/00207713-51-4-1539
Patrik R. Jones, Improving fermentative biomass-derived H2-production by engineering microbial metabolism International Journal of Hydrogen Energy. ,vol. 33, pp. 5122- 5130 ,(2008) , 10.1016/J.IJHYDENE.2008.05.004
Guangli Cao, Nanqi Ren, Aijie Wang, Duu-Jong Lee, Wanqian Guo, Bingfeng Liu, Yujie Feng, Qingliang Zhao, None, Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16 International Journal of Hydrogen Energy. ,vol. 34, pp. 7182- 7188 ,(2009) , 10.1016/J.IJHYDENE.2009.07.009
Tam-Anh D. Nguyen, Se Jong Han, Jun Pyo Kim, Mi Sun Kim, Sang Jun Sim, Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition. Bioresource Technology. ,vol. 101, ,(2010) , 10.1016/J.BIORTECH.2009.03.041
Patrick C Hallenbeck, John R Benemann, Biological hydrogen production; fundamentals and limiting processes International Journal of Hydrogen Energy. ,vol. 27, pp. 1185- 1193 ,(2002) , 10.1016/S0360-3199(02)00131-3
Mustafa Balat, Havva Balat, Cahide Öz, Progress in bioethanol processing Progress in Energy and Combustion Science. ,vol. 34, pp. 551- 573 ,(2008) , 10.1016/J.PECS.2007.11.001