Physical and electrochemical properties of LiFePO4 nanoparticles synthesized by a combination of spray pyrolysis with wet ball-milling

作者: Muxina Konarova , Izumi Taniguchi

DOI: 10.1016/J.JPOWSOUR.2009.06.046

关键词: Transmission electron microscopyBall millScanning electron microscopeRaman spectroscopyChemical engineeringAnalytical chemistryNanoparticleElectrochemical cellChemistrySinteringPyrolysis

摘要: Abstract A novel preparation technique was developed to synthesize LiFePO 4 nanoparticles through a combination of spray pyrolysis (SP) with wet ball-milling (WBM). Using this technique, the investigated for wide range process parameters such as time and sintering temperature. The effect on physical electrochemical properties then discussed analysis using by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission (TEM), Brunauer–Emmet–Teller (BET) method, Raman spectroscopy an cell Li|1 M LiClO in EC:DEC = 1:1|LiFePO . geometric mean diameter 58 nm were prepared at rotating speed 800 rpm 12 h Ar atmosphere followed heat treatment 500 °C 4 h N 2  + 3% H atmosphere. sample delivered first discharge capacities 164 100 mAh g −1 charge–discharge rates 0.1 10 C test cells, respectively. strongly affected formation Fe P, 3 P α-Fe O higher rates.

参考文章(47)
A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, J. B. Goodenough, Effect of Structure on the Fe3 + / Fe2 + Redox Couple in Iron Phosphates Journal of The Electrochemical Society. ,vol. 144, pp. 1609- 1613 ,(1997) , 10.1149/1.1837649
Christopher M. Burba, Roger Frech, Raman and FTIR Spectroscopic Study of Li x FePO4 ( 0 ⩽ x ⩽ 1 ) Journal of The Electrochemical Society. ,vol. 151, ,(2004) , 10.1149/1.1756885
Marca M. Doeff, Yaoqin Hu, Frank McLarnon, Robert Kostecki, Effect of surface carbon structure on the electrochemical performance of LiFePO{sub 4} Electrochemical and Solid State Letters. ,vol. 6, ,(2003) , 10.1149/1.1601372
Xiuqin Ou, Guangchuan Liang, Li Wang, Shengzhao Xu, Xia Zhao, Effects of magnesium doping on electronic conductivity and electrochemical properties of LiFePO4 prepared via hydrothermal route Journal of Power Sources. ,vol. 184, pp. 543- 547 ,(2008) , 10.1016/J.JPOWSOUR.2008.02.077
Guangchuan Liang, Li Wang, Xiuqin Ou, Xia Zhao, Shengzhao Xu, Lithium iron phosphate with high-rate capability synthesized through hydrothermal reaction in glucose solution Journal of Power Sources. ,vol. 184, pp. 538- 542 ,(2008) , 10.1016/J.JPOWSOUR.2008.02.056
S Franger, C Benoit, C Bourbon, F Le Cras, None, Chemistry and electrochemistry of composite LiFePO4 materials for secondary lithium batteries Journal of Physics and Chemistry of Solids. ,vol. 67, pp. 1338- 1342 ,(2006) , 10.1016/J.JPCS.2006.01.066
Daiwon Choi, Prashant N. Kumta, Surfactant based sol–gel approach to nanostructured LiFePO4 for high rate Li-ion batteries Journal of Power Sources. ,vol. 163, pp. 1064- 1069 ,(2007) , 10.1016/J.JPOWSOUR.2006.09.082
Zhaohui Chen, J. R. Dahn, Reducing Carbon in LiFePO4 / C Composite Electrodes to Maximize Specific Energy, Volumetric Energy, and Tap Density Journal of The Electrochemical Society. ,vol. 149, pp. 1184- 1189 ,(2002) , 10.1149/1.1498255