An optimal and stable feature selection approach for traffic classification based on multi-criterion fusion

作者: Adil Fahad , Zahir Tari , Ibrahim Khalil , Abdulmohsen Almalawi , Albert Y Zomaya

DOI: 10.1016/J.FUTURE.2013.09.015

关键词: Global optimizationArtificial intelligenceComputer scienceEntropy (statistical thermodynamics)Network managementNetwork securityFeature selectionData miningRandom forestInternet trafficEntropy (information theory)Traffic classificationPattern recognitionFeature (computer vision)Entropy (energy dispersal)

摘要: … To identify the optimal features for network traffic we categorise these evaluation criteria into groups broadly based on the following [32], [33], [34], [35]: information-based criterion, …

参考文章(57)
Pui Cheong Gabriel Fung, Fred Morstatter, Huan Liu, Feature Selection Strategy in Text Classification Advances in Knowledge Discovery and Data Mining. pp. 26- 37 ,(2011) , 10.1007/978-3-642-20841-6_3
Kenji Kira, Larry A. Rendell, The feature selection problem: traditional methods and a new algorithm national conference on artificial intelligence. pp. 129- 134 ,(1992)
Christian Kreibich, Ian A. Pratt, Evan P. Harris, Andrew W. Moore, James A. Hall, Architecture of a network monitor ,(2003)
I. Csiszár, Maxent, Mathematics, and Information Theory Maximum Entropy and Bayesian Methods. pp. 35- 50 ,(1996) , 10.1007/978-94-011-5430-7_5
Douglas Fisher, Ling Xu, Nazih Zard, Ordering effects in clustering international conference on machine learning. pp. 162- 168 ,(1992) , 10.1016/B978-1-55860-247-2.50026-7
M. Hall, Correlation-based Feature Selection for Machine Learning PhD Thesis, Waikato Univer-sity. ,(1998)
Andrew W. Moore, Konstantina Papagiannaki, Toward the Accurate Identification of Network Applications Lecture Notes in Computer Science. pp. 41- 54 ,(2005) , 10.1007/978-3-540-31966-5_4
Denis Zuev, Andrew Moore, Michael Crogan, Discriminators for use in flow-based classification ,(2013)
Igor Kononenko, Marko Robnik-Sikonja, An adaptation of Relief for attribute estimation in regression international conference on machine learning. pp. 296- 304 ,(1997)