UNIFORMLY QUASIREGULAR SEMIGROUPS IN TWO DIMENSIONS

作者: A. Hinkkanen

DOI:

关键词: Conjugacy classMathematicsMorphismCancellative semigroupPure mathematicsSemigroupBicyclic semigroupRational functionMeromorphic functionRiemann sphereDiscrete mathematics

摘要: Let G be a semigroup of K-quasiregular or K-quasimeromorphic functions map- ping given open set U in the Riemann sphere into itself, for fixed K, operation being composition functions. We prove that if satisfies an algebraic condition, which is true all abelian semigroups, then there exists K-quasiconformal homeomorphism onto V such f ◦G◦f −1 are meromorphic itself. In particular, whole elements ◦G ◦f rational give example generated by two on sphere, each quasiconformally conjugate to quadratic polynomial, cannot conjugated another homeo- morphisms. These results extend and complement similar positive conjugacy result Tukia Sullivan groups homeomorphisms.

参考文章(4)
Dennis Sullivan, On The Ergodic Theory at Infinity of an Arbitrary Discrete Group of Hyperbolic Motions Riemann Surfacese and Related Topics (AM-97). pp. 465- 496 ,(1981) , 10.1515/9781400881550-035
Pekka Tukia, On two-dimensional quasiconformal groups Annales Academiae Scientiarum Fennicae Series A I Mathematica. ,vol. 5, pp. 73- 78 ,(1980) , 10.5186/AASFM.1980.0530
A. Hinkkanen, G. J. Martin, The Dynamics of Semigroups of Rational Functions I Proceedings of the London Mathematical Society. ,vol. s3-73, pp. 358- 384 ,(1996) , 10.1112/PLMS/S3-73.2.358
Olli Lehto, K. I. Virtanen, Quasiconformal mappings in the plane ,(1973)