On Böttcher coordinates and quasiregular maps

作者: Rob Fryer , Alastair Fletcher

DOI:

关键词:

摘要: It is well-known that a polynomial f(z) = adzd(1 + o(1)) can be conjugated by holomorphic map � to w 7! wd in neighbourhood of in�nity. This called Bottcher coordinate for f near In this paper we construct type compositions a�ne mappings and polynomials, class �rst studied [9]. As an application, prove if h c 2 C, then h(z)2 +c not uniformly quasiregular.

参考文章(8)
Aimo Hinkkanen, Gaven J. Martin, Volker Mayer, Local dynamics of uniformly quasiregular mappings Mathematica Scandinavica. ,vol. 95, pp. 80- 100 ,(2004) , 10.7146/MATH.SCAND.A-14450
A. Hinkkanen, UNIFORMLY QUASIREGULAR SEMIGROUPS IN TWO DIMENSIONS Annales Academiae Scientiarum Fennicae. Mathematica. ,vol. 21, pp. 205- 222 ,(1996)
Pekka Tukia, On two-dimensional quasiconformal groups Annales Academiae Scientiarum Fennicae Series A I Mathematica. ,vol. 5, pp. 73- 78 ,(1980) , 10.5186/AASFM.1980.0530
Walter Bergweiler, Alastair Fletcher, Jim Langley, Janis Meyer, The escaping set of a quasiregular mapping Proceedings of the American Mathematical Society. ,vol. 137, pp. 641- 651 ,(2008) , 10.1090/S0002-9939-08-09609-3
ALASTAIR N. FLETCHER, DANIEL A. NICKS, Quasiregular dynamics on the n-sphere Ergodic Theory and Dynamical Systems. ,vol. 31, pp. 23- 31 ,(2011) , 10.1017/S0143385709001072
Xavier Buff, Adam Epstein, Sarah Koch, B\"ottcher coordinates arXiv: Dynamical Systems. ,(2011)
James W. Anderson, Hyperbolic geometry ,(1999)
Walter Bergweiler, Alexandre Eremenko, DYNAMICS OF A HIGHER DIMENSIONAL ANALOG OF THE TRIGONOMETRIC FUNCTIONS Annales Academiae Scientiarum Fennicae. Mathematica. ,vol. 36, pp. 165- 175 ,(2011) , 10.5186/AASFM.2011.3610