Application of the Genetic Algorithms for Identifying the Electrical Parameters of PV Solar Generators

作者: Anis Sellami , Mongi Bouaich

DOI: 10.5772/22714

关键词: Curve fittingNonlinear systemMinificationMaximum power principleMaxima and minimaSolar cellAlgorithmPhotovoltaic systemRegular polygonComputer science

摘要: The determination of model parameters plays an important role in solar cell design and fabrication, especially if these are well correlated to known physical phenomena. A detailed knowledge the can be way for control manufacturing process, may a mean pinpointing causes degradation performances panels photovoltaic systems being produced. For this reason, identification provides powerful tool optimization performance. algorithms determining cells, two types: those that make use selected parts characteristic (Chan et al., 1987; Charles 1981; 1985; Dufo-Lopez Bernal-Agustin, 2005; Enrique 2007) employ whole (Haupt Haupt, 1998; Bahgat 2004; Easwarakhanthan 1986). first group involves solution five equations derived from considering select points current-voltage (I-V) characteristic, e.g. open-circuit short-circuit coordinates, maximum power slopes at strategic portions different level illumination temperature. This method is often much faster simpler comparison curve fitting. However, disadvantage approach only used determine parameters. fitting methods offer advantage taking all experimental data consideration. Conversely it has artificial solutions. nonlinear procedure based on minimisation not convex criterion, using traditional deterministic leads local minima To overcome problem, least square minimization technique computed with global search approaches such Genetic Algorithms (GAs) Sellami 2007; Zagrouba 2010) strategy, increasing probability obtaining best minimum value cost function very reasonable time. In chapter, we propose numerical GAs identify electrical (PV) modules arrays. These are, respectively, photocurrent (Iph), saturation current (Is), series resistance (Rs),

参考文章(12)
Sue Ellen Haupt, Randy L. Haupt, Practical Genetic Algorithms ,(2004)
T. EASWARAKHANTHAN, J. BOTTIN, I. BOUHOUCH, C. BOUTRIT, Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers International Journal of Solar Energy. ,vol. 4, pp. 1- 12 ,(1986) , 10.1080/01425918608909835
D.S.H. Chan, J.C.H. Phang, Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics IEEE Transactions on Electron Devices. ,vol. 34, pp. 286- 293 ,(1987) , 10.1109/T-ED.1987.22920
J.P. Charles, M. Abdelkrim, Y.H. Muoy, P. Mialhe, A practical method of analysis of the current-voltage characteristics of solar cells Solar Cells. ,vol. 4, pp. 169- 178 ,(1981) , 10.1016/0379-6787(81)90067-3
G.J Yu, Y.S Jung, J.Y Choi, G.S Kim, A novel two-mode MPPT control algorithm based on comparative study of existing algorithms Solar Energy. ,vol. 76, pp. 455- 463 ,(2004) , 10.1016/J.SOLENER.2003.08.038
Rodolfo Dufo-López, José L. Bernal-Agustín, Design and control strategies of PV-Diesel systems using genetic algorithms Solar Energy. ,vol. 79, pp. 33- 46 ,(2005) , 10.1016/J.SOLENER.2004.10.004
T. Ikegami, T. Maezono, F. Nakanishi, Y. Yamagata, K. Ebihara, Estimation of equivalent circuit parameters of PV module and its application to optimal operation of PV system Solar Energy Materials and Solar Cells. ,vol. 67, pp. 389- 395 ,(2001) , 10.1016/S0927-0248(00)00307-X
Jacob C.H. Phang, Daniel S.H. Chan, A review of curve fitting error criteria for solar cell I–V characteristics Solar Cells. ,vol. 18, pp. 1- 12 ,(1986) , 10.1016/0379-6787(86)90002-5
Sherwood P Prawel, Robert L Ketter, Modern methods of engineering computation ,(1969)
A.B.G Bahgat, N.H Helwa, G.E Ahamd, E.T El Shenawy, Estimation of the maximum power and normal operating power of a photovoltaic module by neural networks Renewable Energy. ,vol. 29, pp. 443- 457 ,(2004) , 10.1016/S0960-1481(03)00126-5