Unsupervised evolutionary clustering algorithm for mixed type data

作者: Zhi Zheng , Maoguo Gong , Jingjing Ma , Licheng Jiao , Qiaodi Wu

DOI: 10.1109/CEC.2010.5586136

关键词: AlgorithmPattern recognitionArtificial intelligenceCluster analysisCanopy clustering algorithmEvolutionary computationLocal search (optimization)Computer scienceStatistical classificationInitializationEvolutionary algorithmUnsupervised learningLocal optimumData miningAlgorithm design

摘要: In this paper, we propose a novel unsupervised evolutionary clustering algorithm for mixed type data, k-prototype (EKP). As partitional algorithm, (KP) is well-known one data. However, it sensitive to initialization and converges local optimum easily. Global searching ability of the most important advantages (EA), so an EA framework introduced help KP overcome its flaws. study, applied as search strategy, runs under control framework. Experiments on synthetic real-life datasets show that EKP more robust generates much better results than

参考文章(31)
K. Krishna, M. Narasimha Murty, Genetic K-means algorithm systems man and cybernetics. ,vol. 29, pp. 433- 439 ,(1999) , 10.1109/3477.764879
Julia Handl, Joshua Knowles, An Evolutionary Approach to Multiobjective Clustering IEEE Transactions on Evolutionary Computation. ,vol. 11, pp. 56- 76 ,(2007) , 10.1109/TEVC.2006.877146
P.C.H. Ma, K.C.C. Chan, Xin Yao, D.K Chiu, An evolutionary clustering algorithm for gene expression microarray data analysis IEEE Transactions on Evolutionary Computation. ,vol. 10, pp. 296- 314 ,(2006) , 10.1109/TEVC.2005.859371
Peihe Tang, Hao Liu, Segmentation and Recognition of Marrow Cells Image Based on Wavelet and Genetic Cluster software engineering, artificial intelligence, networking and parallel/distributed computing. ,vol. 1, pp. 559- 563 ,(2007) , 10.1109/SNPD.2007.488
L.O. Hall, I.B. Ozyurt, J.C. Bezdek, Clustering with a genetically optimized approach IEEE Transactions on Evolutionary Computation. ,vol. 3, pp. 103- 112 ,(1999) , 10.1109/4235.771164
Yongguo Liu, Mao Ye, Jun Peng, Hong Wu, Finding the optimal number of clusters using genetic algorithms ieee conference on cybernetics and intelligent systems. pp. 1325- 1330 ,(2008) , 10.1109/ICCIS.2008.4670864
E.R. Hruschka, R.J.G.B. Campello, A.A. Freitas, A.C.P.L.F. de Carvalho, A Survey of Evolutionary Algorithms for Clustering systems man and cybernetics. ,vol. 39, pp. 133- 155 ,(2009) , 10.1109/TSMCC.2008.2007252
A Genetic Clustering Technique Using a New Line Symmetry Based Distance Measure international conference on advanced computing. pp. 365- 370 ,(2007) , 10.1109/ADCOM.2007.11
S. Bandyopadhyay, S. Saha, A Point Symmetry-Based Clustering Technique for Automatic Evolution of Clusters IEEE Transactions on Knowledge and Data Engineering. ,vol. 20, pp. 1441- 1457 ,(2008) , 10.1109/TKDE.2008.79
Sanghamitra Bandyopadhyay, Ujjwal Maulik, Anirban Mukhopadhyay, Multiobjective Genetic Clustering for Pixel Classification in Remote Sensing Imagery IEEE Transactions on Geoscience and Remote Sensing. ,vol. 45, pp. 1506- 1511 ,(2007) , 10.1109/TGRS.2007.892604