The valence bond solid in quasicrystals

作者: Anatol N. Kirillov , Vladimir E. Korepin

DOI:

关键词: Mathematical analysisQuasicrystalValence bond theoryGegenbauer polynomialsGeometric function theoryMathematicsQuantumYoung tableauPure mathematicsHeisenberg modelGround state

摘要: A generalized model of Heisenberg quantum antiferromagnet on an arbitrary graph is constructed so that the VBS unique ground state. The norm base state and equal time multi point correlation functions are computed in terms hyper geometric functions. For one-dimensional periodic we present a method computing based study commuting family transfer matrices. connection correlators with Young tableaux Gegenbauer polynomials found.

参考文章(15)
P J Steinhardt, S Ostlund, The physics of quasicrystals World Scientific. ,(1987) , 10.1142/0391
Wilfrid Norman Bailey, Generalized Hypergeometric Series ,(1965)
P.L. Iske, W.J. Caspers, EXACT GROUND STATES OF ONE-DIMENSIONAL VALENCE-BOND-SOLID HAMILTONIANS Modern Physics Letters B. ,vol. 01, pp. 231- 237 ,(1987) , 10.1142/S0217984987000326
D. Shechtman, I. Blech, D. Gratias, J. W. Cahn, Metallic Phase with Long-Range Orientational Order and No Translational Symmetry Physical Review Letters. ,vol. 53, pp. 1951- 1953 ,(1984) , 10.1103/PHYSREVLETT.53.1951
J. T. Chayes, L. Chayes, S. A. Kivelson, Valence bond ground states in a frustrated two-dimensional spin-1/2 Heisenberg antiferromagnet Communications in Mathematical Physics. ,vol. 123, pp. 53- 83 ,(1989) , 10.1007/BF01244017
Ian Affleck, Tom Kennedy, Elliott H. Lieb, Hal Tasaki, Valence Bond Ground States in Isotropic Quantum Antiferromagnets Communications in Mathematical Physics. ,vol. 115, pp. 477- 528 ,(1988) , 10.1007/BF01218021
C. L. Henley, Sphere packings and local environments in Penrose tilings Physical Review B. ,vol. 34, pp. 797- 816 ,(1986) , 10.1103/PHYSREVB.34.797
Ian Affleck, Tom Kennedy, Elliott H. Lieb, Hal Tasaki, Rigorous Results on Valence-Bond Ground States in Antiferromagnets Physical Review Letters. ,vol. 59, pp. 799- 802 ,(1987) , 10.1103/PHYSREVLETT.59.799
V. E. Korepin, Completely integrable models in quasicrystals Communications in Mathematical Physics. ,vol. 110, pp. 157- 171 ,(1987) , 10.1007/BF01209021