Completely integrable models in quasicrystals

作者: V. E. Korepin

DOI: 10.1007/BF01209021

关键词:

摘要: The general method of construction integrable dynamical models in quasicrystals is presented the paper. It illustrated on example model interacting spins for Penrose nonperiodic tiling plane. Another constructed three dimensional icosahedral space. bulk free energy calculated these models.

参考文章(36)
V.E. Korepin, A.G. Izergin, Quantum inverse scattering method Sov. J. Particles Nucl. (Engl. Transl.); (United States). ,(1982)
P. Kramer, R. Neri, On periodic and non-periodic space fillings of Em obtained by projection Acta Crystallographica Section A. ,vol. 41, pp. 619- 619 ,(1984) , 10.1107/S0108767385001350
Dov Levine, Paul Joseph Steinhardt, Quasicrystals: a new class of ordered structures Physical Review Letters. ,vol. 53, pp. 2477- 2480 ,(1984) , 10.1103/PHYSREVLETT.53.2477
R.J. Baxter, Baxter equations and the Zamolodchikov model Physica D: Nonlinear Phenomena. ,vol. 18, pp. 321- 347 ,(1986) , 10.1016/0167-2789(86)90195-8
Stellan Ostlund, Rahul Pandit, David Rand, Hans Joachim Schellnhuber, Eric D. Siggia, One-Dimensional Schrödinger Equation with an Almost Periodic Potential Physical Review Letters. ,vol. 50, pp. 1873- 1876 ,(1983) , 10.1103/PHYSREVLETT.50.1873
A. Katz, M. Duneau, Quasiperiodic Patterns with Icosahedral Symmetry Journal De Physique. ,vol. 47, pp. 181- 196 ,(1986) , 10.1007/978-1-4757-0184-5_29
D. Shechtman, I. Blech, D. Gratias, J. W. Cahn, Metallic Phase with Long-Range Orientational Order and No Translational Symmetry Physical Review Letters. ,vol. 53, pp. 1951- 1953 ,(1984) , 10.1103/PHYSREVLETT.53.1951