Comparing two different plasma devices kINPen and Adtec SteriPlas regarding their molecular and cellular effects on wound healing

作者: Stephanie Arndt , Anke Schmidt , Sigrid Karrer , Thomas von Woedtke

DOI: 10.1016/J.CPME.2018.01.002

关键词: Biomedical engineeringWound healingPlasmaContext (language use)Plasma torchMedicineAtmospheric-pressure plasmaPlasma medicineUltraviolet lightIn vivo

摘要: Abstract Background Over the past years, plasma medicine has developed from an unknown and little accepted medical field into integral part of research subsequently clinical treatment. The cellular mechanisms mediated by treatment in wound healing are well investigated, sources specifically for treating disorders already available. Nevertheless, results obtained with one source cannot be simply transferred to another device. reason this non-transferability is biological effects caused ‘cocktail’ reactive species, radiation (above all ultraviolet light), electrical current flow body, working gas, heat transfer treated surface, depending on generation technology. Therefore, avoid toxic, mutagenic, or otherwise damaging effects, physical biomedical performance parameters each device need comprehensively evaluated before can used as a medicinal product. Objective This article compared most important molecular investigated vitro vivo context healing. Methods study two devices that CE-certified class IIa, kINPen®MED including experimental predecessor kINPen09 kINPen11 (summarized below under kINPen, jet, neoplas tools GmbH, Greifswald, Germany) MicroPlaSter/Adtec SteriPlas (plasma torch, Adtec Plasma Technology/Adtec Europe, Hiroshima, Japan/Hunslow, UK). Results kINPen MicroPlaSter both optically technically completely different devices. almost comparable regard their such collagen expression, induction healing-relevant cytokines growth factors, activation immune cells other protective mechanisms, improved differ effect cell proliferation migration, probably due times modalities action devices, cells. Conclusions comparative showed cold atmospheric several positive substantial, basic research.

参考文章(89)
BRENDAN A. NIEMIRA, JOSEPH SITES, Cold Plasma Inactivates Salmonella Stanley and Escherichia coli O157:H7 Inoculated on Golden Delicious Apples Journal of Food Protection. ,vol. 71, pp. 1357- 1365 ,(2008) , 10.4315/0362-028X-71.7.1357
Ying Yu, Ming Tan, Hongxiang Chen, Zhihong Wu, Li Xu, Juan Li, Jingjiang Cao, Yinsheng Yang, Xuemin Xiao, Xin Lian, Xinpei Lu, Yating Tu, Non-thermal plasma suppresses bacterial colonization on skin wound and promotes wound healing in mice Journal of Huazhong University of Science and Technology [Medical Sciences]. ,vol. 31, pp. 390- 394 ,(2011) , 10.1007/S11596-011-0387-2
Martin Klebes, Christin Ulrich, Franziska Kluschke, Alexa Patzelt, Staffan Vandersee, Heike Richter, Adrienne Bob, Johanna von Hutten, Jorien T. Krediet, Axel Kramer, Jürgen Lademann, Bernhard Lange-Asschenfeld, Combined antibacterial effects of tissue-tolerable plasma and a modern conventional liquid antiseptic on chronic wound treatment. Journal of Biophotonics. ,vol. 8, pp. 382- 391 ,(2015) , 10.1002/JBIO.201400007
Nasruddin, Kanae Yukari, Nakajima, Mukai, Komatsu Emi, Setyowati Heni, Rahayu Esti, Nur Muhammad, Ishijima Tatsuo, Enomoto Hiroshi, Uesugi Yoshihiko, Sugama Junko, Toshio, Nakatani, A Simple Technique to Improve Contractile Effect of Cold Plasma Jet on Acute Mouse Wound by Dropping Water Plasma Processes and Polymers. ,vol. 12, pp. 1128- 1138 ,(2015) , 10.1002/PPAP.201400236
Ho Young Kim, Sung Kil Kang, Seon Min Park, Hoe Yune Jung, Bo Hwa Choi, Jae Yoon Sim, Jae Koo Lee, Characterization and Effects of Ar/Air Microwave Plasma on Wound Healing Plasma Processes and Polymers. ,vol. 12, pp. 1423- 1434 ,(2015) , 10.1002/PPAP.201500017
Georg Daeschlein, Sebastian Scholz, Raees Ahmed, Abhijit Majumdar, Thomas von Woedtke, Hermann Haase, Maria Niggemeier, Eckhard Kindel, Ronny Brandenburg, Klaus Dieter Weltmann, Michael Jünger, Cold plasma is well-tolerated and does not disturb skin barrier or reduce skin moisture. Journal Der Deutschen Dermatologischen Gesellschaft. ,vol. 10, pp. 509- 515 ,(2012) , 10.1111/J.1610-0387.2012.07857.X
Kristian Wende, Stephan Reuter, Thomas von Woedtke, Klaus-Dieter Weltmann, Kai Masur, Redox-Based Assay for Assessment of Biological Impact of Plasma Treatment Plasma Processes and Polymers. ,vol. 11, pp. 655- 663 ,(2014) , 10.1002/PPAP.201300172
C. Ulrich, F. Kluschke, A. Patzelt, S. Vandersee, V.A. Czaika, H. Richter, A. Bob, J. von Hutten, C. Painsi, R. Hüge, A. Kramer, O. Assadian, J. Lademann, B. Lange-Asschenfeldt, Clinical use of cold atmospheric pressure argon plasma in chronic leg ulcers: A pilot study. Journal of Wound Care. ,vol. 24, pp. 196- 203 ,(2015) , 10.12968/JOWC.2015.24.5.196
G. Isbary, J. Heinlin, T. Shimizu, J.L. Zimmermann, G. Morfill, H.-U. Schmidt, R. Monetti, B. Steffes, W. Bunk, Y. Li, T. Klaempfl, S. Karrer, M. Landthaler, W. Stolz, Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. British Journal of Dermatology. ,vol. 167, pp. 404- 410 ,(2012) , 10.1111/J.1365-2133.2012.10923.X
Ok Joo Lee, Hyung Woo Ju, Gilson Khang, Peter P. Sun, Jose Rivera, Jin Hoon Cho, Sung-Jin Park, J. Gary Eden, Chan Hum Park, An experimental burn wound-healing study of non-thermal atmospheric pressure microplasma jet arrays. Journal of Tissue Engineering and Regenerative Medicine. ,vol. 10, pp. 348- 357 ,(2016) , 10.1002/TERM.2074