A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer

作者: P.J.G. Lisboa , H. Wong , P. Harris , R. Swindell

DOI: 10.1016/S0933-3657(03)00033-2

关键词: Proportional hazards modelData miningAkaike information criterionRelevance (information retrieval)Artificial neural networkBreast cancerFeedforward neural networkComputer scienceModel selectionCohort study

摘要: … However, the main limitation of generic non-linear models such as neural networks is … variables in the model, the Bayesian framework can be utilized in full to carry out model selection. …

参考文章(16)
Christopher M. Bishop, Neural networks for pattern recognition ,(1995)
David R. Cox, Regression Models and Life-Tables Springer Series in Statistics. ,vol. 34, pp. 527- 541 ,(1992) , 10.1007/978-1-4612-4380-9_37
E. L. Kaplan, Paul Meier, Nonparametric Estimation from Incomplete Observations Springer Series in Statistics. ,vol. 53, pp. 319- 337 ,(1992) , 10.1007/978-1-4612-4380-9_25
P.J.G Lisboa, A Vellido, H Wong, Bias reduction in skewed binary classification with Bayesian neural networks Neural Networks. ,vol. 13, pp. 407- 410 ,(2000) , 10.1016/S0893-6080(00)00022-8
Peter M. Ravdin, Gary M. Clark, Susan G. Hilsenbeck, Marilyn A. Owens, Patricia Vendely, M. R. Pandian, William L. McGuire, A demonstration that breast cancer recurrence can be predicted by neural network analysis. Breast Cancer Research and Treatment. ,vol. 21, pp. 47- 53 ,(1992) , 10.1007/BF01811963
Marcus H. Galea, Roger W. Blamey, Christopher E. Elston, Ian O. Ellis, The Nottingham Prognostic Index in primary breast cancer. Breast Cancer Research and Treatment. ,vol. 22, pp. 207- 219 ,(1992) , 10.1007/BF01840834
P.J.G. Lisboa, T.A. Etchells, D.C. Pountney, Minimal MLPs do not model the XOR logic Neurocomputing. ,vol. 48, pp. 1033- 1037 ,(2002) , 10.1016/S0925-2312(02)00607-0
Erik Christensen, Multivariate survival analysis using Cox's regression model Hepatology. ,vol. 7, pp. 1346- 1358 ,(1987) , 10.1002/HEP.1840070628