Pathway dynamics in the optimal quantum control of rubidium: Cooperation and competition

作者: Fang Gao , Roberto Rey-de-Castro , Ashley M. Donovan , Jian Xu , Yaoxiong Wang

DOI: 10.1103/PHYSREVA.89.023416

关键词: PopulationCombinatoricsRubidiumPhysicsState (functional analysis)Quantum controlExcited state

摘要: The dynamics that take place in the optimal quantum control of atomic rubidium upon population transfer from state 5${S}_{1/2}$ to 5${D}_{3/2}$ are investigated with Hamiltonian-encoding--observable-decoding (HE-OD). For modest laser powers two second-order pathways, 5${S}_{1/2}$$\phantom{\rule{0.16em}{0ex}}\ensuremath{\rightarrow}\phantom{\rule{0.16em}{0ex}}$5${P}_{3/2}$$\phantom{\rule{0.16em}{0ex}}\ensuremath{\rightarrow}\phantom{\rule{0.16em}{0ex}}$5${D}_{3/2}$ (pathway 1) and 5${S}_{1/2}$$\phantom{\rule{0.16em}{0ex}}\ensuremath{\rightarrow}\phantom{\rule{0.16em}{0ex}}$5${P}_{1/2}$$\phantom{\rule{0.16em}{0ex}}\ensuremath{\rightarrow}\phantom{\rule{0.16em}{0ex}}$5${D}_{3/2}$ 2), govern process. Pathway 1 has larger transition dipoles than pathway 2. However, 5${P}_{3/2}$ along may also be excited an undesired 5${D}_{5/2}$, which can result ``leakage.'' Thus, pathways either cooperate or compete each other various dynamical regimes. An important feature case cooperation is ratio between amplitudes 2 oscillates over time a frequency equal detuning transitions 5${S}_{1/2}$$\phantom{\rule{0.16em}{0ex}}\ensuremath{\rightarrow}\phantom{\rule{0.16em}{0ex}}$5${P}_{3/2}$ 5${P}_{3/2}$$\phantom{\rule{0.16em}{0ex}}\ensuremath{\rightarrow}\phantom{\rule{0.16em}{0ex}}$5${D}_{3/2}$. We study regime dominates when no longer compensate for its leakage. overall analysis illustrates utility HE-OD as tool reveal mechanism.

参考文章(31)
Constantin Brif, Raj Chakrabarti, Herschel Rabitz, Control of quantum phenomena: Past, present, and future arXiv: Quantum Physics. ,(2009) , 10.1088/1367-2630/12/7/075008
JM Geremia, John K Stockton, Hideo Mabuchi, Real-time quantum feedback control of atomic spin-squeezing. Science. ,vol. 304, pp. 270- 273 ,(2004) , 10.1126/SCIENCE.1095374
H. M. Wiseman, A. C. Doherty, Optimal unravellings for feedback control in linear quantum systems. Physical Review Letters. ,vol. 94, pp. 070405- 070405 ,(2005) , 10.1103/PHYSREVLETT.94.070405
Herschel Rabitz, Regina de Vivie-Riedle, Marcus Motzkus, Karl Kompa, Whither the Future of Controlling Quantum Phenomena? Science. ,vol. 288, pp. 824- 828 ,(2000) , 10.1126/SCIENCE.288.5467.824
Joshua Combes, Kurt Jacobs, Rapid state reduction of quantum systems using feedback control. Physical Review Letters. ,vol. 96, pp. 010504- 010504 ,(2006) , 10.1103/PHYSREVLETT.96.010504
G. G. Gillett, R. B. Dalton, B. P. Lanyon, M. P. Almeida, M. Barbieri, G. J. Pryde, J. L. O’Brien, K. J. Resch, S. D. Bartlett, A. G. White, Experimental Feedback Control of Quantum Systems Using Weak Measurements Physical Review Letters. ,vol. 104, pp. 080503- ,(2010) , 10.1103/PHYSREVLETT.104.080503
Naoki Yamamoto, Hendra I. Nurdin, Matthew R. James, Ian R. Petersen, Avoiding entanglement sudden death via measurement feedback control in a quantum network Physical Review A. ,vol. 78, pp. 042339- ,(2008) , 10.1103/PHYSREVA.78.042339
Stefano Mancini, Howard M. Wiseman, Optimal control of entanglement via quantum feedback Physical Review A. ,vol. 75, pp. 012330- ,(2007) , 10.1103/PHYSREVA.75.012330
Jing Zhang, Yu-xi Liu, Re-Bing Wu, Chun-Wen Li, Tzyh-Jong Tarn, Transition from weak to strong measurements by nonlinear quantum feedback control Physical Review A. ,vol. 82, pp. 022101- ,(2010) , 10.1103/PHYSREVA.82.022101
Jing Zhang, Yu-xi Liu, Franco Nori, Cooling and squeezing the fluctuations of a nanomechanical beam by indirect quantum feedback control Physical Review A. ,vol. 79, pp. 052102- ,(2009) , 10.1103/PHYSREVA.79.052102