Removal of Ni (II) ions from water using scrap tire

作者: Vinod Kumar Gupta , Suhas , Arunima Nayak , Shilpi Agarwal , Monika Chaudhary

DOI: 10.1016/J.MOLLIQ.2013.11.008

关键词: Langmuir adsorption modelIndustrial wastewater treatmentAdsorptionInorganic chemistryMaterials scienceEndothermic processMetal ions in aqueous solutionAqueous solutionNickelActivated carbon

摘要: Abstract The present study was undertaken to evaluate the potential of scrap tire as adsorbent for removal nickel ions from water. activated carbon prepared showed porous morphology and favorable surface chemistry binding Ni 2 + ions. Batch studies demonstrated that under laboratory conditions, a 0.5 g/L dose found be optimum at pH 7, contact time 50 mins temperature 55 °C achieving ≥ 95% synthetic solution containing 0.1 ppm concentration. Practical applications using metal fabricating industrial wastewater revealed developed has capability removing not only 95% but also other toxic were removed significant extent. Langmuir isotherm model parameters maximum adsorption capacity 25 mg/g with conditions removal. process is believed proceed by an initial followed intraparticle diffusion. Thermodynamic feasibility endothermic nature system. results suggest can used beneficially aqueous solution.

参考文章(58)
Andrew Eaton, A.E. Greenberg, Lenore S. Clesceri, Standard methods for the examination of water and wastewater Published in <b>1998</b> in Washington DC) by American public health association. ,(1992)
V.K. Gupta, A.K. Jain, P. Kumar, S. Agarwal, G. Maheshwari, Chromium(III)-selective sensor based on tri-o-thymotide in PVC matrix Sensors and Actuators B-chemical. ,vol. 113, pp. 182- 186 ,(2006) , 10.1016/J.SNB.2005.02.046
Vinod K. Gupta, Rajendra N. Goyal, Ram A. Sharma, Comparative studies of neodymium (III)-selective PVC membrane sensors. Analytica Chimica Acta. ,vol. 647, pp. 66- 71 ,(2009) , 10.1016/J.ACA.2009.05.031
Vinod K. Gupta, Arshi Rastogi, Arunima Nayak, Biosorption of nickel onto treated alga (Oedogonium hatei): Application of isotherm and kinetic models. Journal of Colloid and Interface Science. ,vol. 342, pp. 533- 539 ,(2010) , 10.1016/J.JCIS.2009.10.074
E MANCHONVIZUETE, A MACIASGARCIA, A NADALGISBERT, C FERNANDEZGONZALEZ, V GOMEZSERRANO, Adsorption of mercury by carbonaceous adsorbents prepared from rubber of tyre wastes Journal of Hazardous Materials. ,vol. 119, pp. 231- 238 ,(2005) , 10.1016/J.JHAZMAT.2004.12.028
V. Gómez-Serrano, M. Alexandre-Franco, C. Fernández-González, A. Macías-García, Uptake of lead by carbonaceous adsorbents developed from tire rubber Adsorption-journal of The International Adsorption Society. ,vol. 14, pp. 591- 600 ,(2008) , 10.1007/S10450-008-9115-Z
Irving Langmuir, THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. Journal of the American Chemical Society. ,vol. 40, pp. 1361- 1403 ,(1918) , 10.1021/JA02242A004
Rajendra N. Goyal, Vinod K. Gupta, Sanghamitra Chatterjee, Electrochemical oxidation of 2′,3′-dideoxyadenosine at pyrolytic graphite electrode Electrochimica Acta. ,vol. 53, pp. 5354- 5360 ,(2008) , 10.1016/J.ELECTACTA.2008.02.059
Bankim J. Sanghavi, Gary Hirsch, Shashi P. Karna, Ashwini K. Srivastava, Potentiometric stripping analysis of methyl and ethyl parathion employing carbon nanoparticles and halloysite nanoclay modified carbon paste electrode Analytica Chimica Acta. ,vol. 735, pp. 37- 45 ,(2012) , 10.1016/J.ACA.2012.05.029