Propagation characteristics of young hot flow anomalies near the bow shock: Cluster observations

作者: T Xiao , H Zhang , QQ Shi , Q‐G Zong , SY Fu

DOI: 10.1002/2015JA021013

关键词: Dynamic pressureAnomaly (natural sciences)Bow shocks in astrophysicsSolar windTotal pressureExtreme value theoryMechanicsOpticsPhysicsThermalFlow (psychology)

摘要: Based on Cluster observations, the propagation velocities and normal directions of hot flow anomaly (HFA) boundaries upstream Earth's bow shock are calculated. Twenty-one young HFAs, which have clear leading trailing boundaries, were selected, multispacecraft timing method considering errors was employed for investigation. According to difference in velocity edges, we categorized these events into three groups, namely, contracting, expanding, stable events. The contraction speed is a few tens kilometers per second contracting expansion more than hundred expanding For events, edges propagate at almost same within error range. We further investigated what causes them contract, expand, or stay by carefully calculating thermal pressure HFAs two distinct ion populations (solar wind beam reflected flow). It found that extreme value sum magnetic inside compared with nearest point outside higher lower there no significant total (sum thermal, magnetic, dynamic pressure) variation has effect evolution most (70%) implies plays an important role HFAs.

参考文章(43)
Shan Wang, Qiugang Zong, Hui Zhang, Cluster observations of hot flow anomalies with large flow deflections: 2. Bow shock geometry at HFA edges Journal of Geophysical Research. ,vol. 118, pp. 418- 433 ,(2013) , 10.1029/2012JA018204
Y. Li, G. Kirchengast, B. Scherllin-Pirscher, S. Wu, M. Schwaerz, J. Fritzer, S. Zhang, B. A. Carter, K. Zhang, A new dynamic approach for statistical optimization of GNSS radio occultation bending angles for optimal climate monitoring utility Journal of Geophysical Research. ,vol. 118, pp. 1- 60 ,(2013) , 10.1002/2013JD020763
H. Zhang, D. G. Sibeck, Q.-G. Zong, N. Omidi, D. Turner, L. B. N. Clausen, Spontaneous hot flow anomalies at quasi‐parallel shocks: 1. Observations Journal of Geophysical Research. ,vol. 118, pp. 3357- 3363 ,(2013) , 10.1002/JGRA.50376
N. Omidi, H. Zhang, D. Sibeck, D. Turner, Spontaneous Hot Flow Anomalies at Quasi-Parallel Shocks: 2. Hybrid Simulations Journal of Geophysical Research. ,vol. 118, pp. 173- 180 ,(2013) , 10.1029/2012JA018099
V. M. Uritsky, J. A. Slavin, S. A. Boardsen, T. Sundberg, J. M. Raines, D. J. Gershman, G. Collinson, D. Sibeck, G. V. Khazanov, B. J. Anderson, H. Korth, Active current sheets and candidate hot flow anomalies upstream of Mercury's bow shock Journal of Geophysical Research. ,vol. 119, pp. 853- 876 ,(2014) , 10.1002/2013JA019052
Shan Wang, Qiugang Zong, Hui Zhang, Cluster observations of hot flow anomalies with large flow deflections: 1. Velocity deflections Journal of Geophysical Research: Space Physics. ,vol. 118, pp. 732- 743 ,(2013) , 10.1002/JGRA.50100
Shan Wang, Qiugang Zong, Hui Zhang, Hot flow anomaly formation and evolution: Cluster observations Journal of Geophysical Research. ,vol. 118, pp. 4360- 4380 ,(2013) , 10.1002/JGRA.50424
Marit Øieroset, David L. Mitchell, Tai D. Phan, Robert P. Lin, Mario H. Acuña, Hot diamagnetic cavities upstream of the Martian bow shock Geophysical Research Letters. ,vol. 28, pp. 887- 890 ,(2001) , 10.1029/2000GL012289
E. A. Lucek, Cluster observations of hot flow anomalies Journal of Geophysical Research. ,vol. 109, ,(2004) , 10.1029/2003JA010016
G. Facskó, K. Kecskeméty, G. Erdős, M. Tátrallyay, P.W. Daly, I. Dandouras, A statistical study of hot flow anomalies using Cluster data Advances in Space Research. ,vol. 41, pp. 1286- 1291 ,(2008) , 10.1016/J.ASR.2008.02.005